内容概要:本文详细探讨了基于神经网络自抗扰(RBF-ADRC)控制永磁同步电机的技术,并将其与传统的外环ADRC控制方法进行对比仿真。首先介绍了永磁同步电机的应用背景及其控制需求,随后阐述了外环采用二阶神经网络自抗扰控制的具体实现方式,即结合扩展状态观测器(ESO)和径向基函数(RBF)网络来整定自抗扰中的参数。接着,通过对两种控制方法的响应速度、稳定性和抗干扰能力等方面的对比分析,验证了RBF-ADRC在多个方面的优越性。最后提供了部分关键编程公式的简述以及相关参考文献列表。 适合人群:从事电机控制、自动化控制领域的研究人员和技术人员,尤其是对神经网络自抗扰控制感兴趣的学者。 使用场景及目标:适用于需要深入了解永磁同步电机高级控制策略的研究项目,旨在提升电机控制系统的精度和稳定性,为实际应用提供理论支持和技术指导。 其他说明:文中提供的编程公式文档和参考文献有助于读者深入理解和实现RBF-ADRC控制方法。
2026-01-06 13:55:46 1000KB 神经网络 径向基函数(RBF)
1
内容概要:本文详细探讨了基于神经网络自抗扰(RBF-ADRC)控制永磁同步电机的技术,并将其与传统的外环ADRC进行对比仿真。首先介绍了永磁同步电机的应用背景及其控制需求,随后阐述了外环采用二阶神经网络自抗扰控制的方法,结合扩展状态观测器(ESO)和径向基函数(RBF)网络来实现高精度、高稳定性的控制。接着,通过对RBF-ADRC和ADRC的仿真对比,从响应速度、稳定性和抗干扰能力等多个方面进行了详细的分析。最后提供了关键编程公式的概述以及相关的参考文献,为后续的研究和应用提供了宝贵的资料。 适合人群:从事电机控制、自动化控制领域的研究人员和技术人员,尤其是对神经网络自抗扰控制感兴趣的学者。 使用场景及目标:适用于需要深入了解永磁同步电机控制策略的研究项目,旨在提升电机控制系统的性能,特别是在复杂工况下保持高精度和高稳定性。 其他说明:本文不仅提供了理论分析,还附有编程公式和参考文献,有助于读者深入理解和实践RBF-ADRC控制方法。
1
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。
1
为了正确判断管道是否发生泄漏,本文采用混合学习方法对网络进行训练学习。通过将管道运行参数作为神经网络的输入,管道运行状态作为神经网络的输出,实现两者的非线性映射,以此来判断输入信号是否为泄漏信号,并选用K-means聚类方法和递推最小二乘法来确定网络参数。通过用天然气管道运行的实测数据对RBF神经网络进行了训练和测试,得到结果误差在可接受的范围内,从而证明RBF神经网络的方法可用于天然气管道泄漏检测的研究。
1
基于径向基函数RBF神经网络的传感器故障诊断的方法研究
2021-12-10 09:59:12 897KB 基于 函数 rbf 神经网络
1
针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。
1
RBF 径向基函数 (RBF) 插值 使用标准或自定义距离函数为任意维度的输入和输出值构建径向基函数。 安装 $ npm install rbf 用法 var RBF = require ( 'rbf' ) ; var points = [ [ 0 , 0 ] , [ 0 , 100 ] ] ; // values could be vectors of any dimensionality. // The computed interpolant function will return values or vectors accordingly. var values = [ 0.0 , 1.0 ] // RBF accepts a distance function as a third parameter : // either one of the follow
2021-12-03 15:22:04 4KB JavaScript
1
matlab精度检验代码皇家空军 包含用于径向基函数(RBF)应用程序的工具的Python软件包。 应用包括内插散乱数据和求解不规则域上的偏微分方程(PDE)。 此软件包的大部分灵感来自Bengt Fornberg和Natasha Flyer的著作《径向基函数的底漆及其在地球科学中的应用》和Gregory Fasshauer的《 Matlab的无网格近似方法》。 可以找到此软件包的完整文档。 特征 RBF类,用于评估RBF及其精确导数 RBFInterpolant类,用于对分散的且可能有噪声的N维数据进行插值。 也可以评估插值的精确导数 weight_matrix函数,该函数生成径向基函数有限差分(RBF-FD)权重。 这用于解决不规则域上的大规模PDE 节点生成函数,例如min_energy_nodes和poisson_disc_nodes ,用于通过频谱RBF方法或RBF-FD方法求解PDE 用于两个和三个空间维度的计算几何函数(例如,多边形测试中的点) GaussianProcess类,用于高斯过程回归(GPR)。 GPR与RBF插值相似,但它具有贝叶斯统计基础 安装 RBF需要
2021-11-12 18:12:33 13.88MB 系统开源
1
粒子群算法(PSO)优化的径向基函数(RBF)神经网络算法.zip
2021-07-05 09:08:03 4KB RBF 粒子群算法 matlab
1
径向基函数神经网络的matlab程序,(函数逼近、拟合曲线、可改写为多输入多输出的神经网络),基于聚类的RBF 网设计算法、.基于梯度法的RBF 网络设计算法、.基于OLS 的RBF 网设计算法
1