为了提高人脸识别的准确率,提出了一种基于二维线性判别分析的彩色人脸识别算法,直接对彩色人脸图像不同通道的颜色信息进行编码,采用矩阵表示模型描述人脸对象;融合人脸的类别特征,采用二维线性判别分析的算法提取彩色人脸的分类特征;根据投影后的特征矩阵,采用最近邻分类的算法进行人脸识别。利用CVL和CMU PIE彩色人脸数据库进行实验。结果表明,本文提出的彩色人脸识别算法能有效地提高人脸识别的准确率,明显优于对比的算法。
2022-04-28 03:35:18 287KB 工程技术 论文
1
为了缓解线性判别分析(linear discriminant analysis,LDA)方法在小样本情况下出现的矩阵奇异性问题,针对彩色人脸图像,利用其四元数矩阵表示模式,在人脸识别中引入基于四元数表示的二维LDA、双向LDA方法.这些方法充分利用了彩色图像的空间分布信息,通过在行、列方向降维提取图像的2DLDA、BDLDA特征,缓解了类内散度矩阵的奇异性问题.在FERET彩色人脸数据库及AR彩色人脸数据库上的大量实验证明,本文方法与基于四元数矩阵表示的2DPCA、BDPCA算法相比,识别性能均有提高.
1