基于强化学习的空战对抗 利用值函数逼近网络设计无人机空战自主决策系统,采用epsilon贪婪策略,三层网络结构。 其中包含了无人机作为质点时的运动模型和动力学模型的建模。 由于无人机作战的动作是连续并且复杂的,本项目仅考虑俯仰角gamma(又叫航倾角)和航向角pusin的变化,并且离散的规定每次变化的幅度为10度,假定速度v为恒定值。根据飞机的运动模型,由俯仰角、航向角和速度可以推算出飞机位置的改变,即x,y,z三个方向的速度分量,在每一步中,根据这些分量变化位置position信息,posintion中的三个值为x,y,z坐标,是东北天坐标系下的坐标值。从坐标信息和角度信息以及速度信息,可以计算出两个飞机的相对作战态势state。 在上文中提到,我们的动作是仅对俯仰角和航向角进行改变,即增大,减少和不变,故两个角度的变化组合一共有3×3=9种动作。在每个态势下,都有9种动作可以选择,将这个态势下的9种动作将会产生的新的态势,作为网络的输入,网络的输出是9个数字,代表每个动作的值函数。 由于是无监督学习,故我们需要利用值函数的Bellman公式生成标签。本文利用时间差分思想,(时间差
2025-07-13 21:51:06 84KB 对抗学习 强化学习
1
深度强化学习是一门将深度学习与强化学习结合起来的跨学科领域,其主要思想是通过深度神经网络来近似处理强化学习中的函数逼近问题,从而能够处理具有高维状态和动作空间的复杂任务。强化学习的核心思想是通过智能体(Agent)与环境(Environment)的交互来学习策略(Policy),即智能体根据当前状态决定采取哪种动作以最大化累计奖励(Cumulative Reward)。深度强化学习在近年来取得了显著的成功,尤其是在游戏、机器人、自然语言处理、计算机视觉等领域。 在深度强化学习中,有几个核心元素是至关重要的,包括价值函数(Value Function)、策略(Policy)、奖励(Reward)、模型(Model)、规划(Planning)和探索(Exploration)。价值函数主要用于评价在给定状态或状态下采取某一动作的长期收益;策略则是智能体遵循的规则,它决定了智能体在某个状态下应该采取哪个动作;奖励函数用来衡量智能体的行为,是强化学习中的关键反馈信号;模型是指智能体对环境的内部表示,它能够预测环境的未来状态;规划是指在已知模型的情况下,智能体如何通过预测和推理来选择最优行为;探索则是智能体用来发现新知识的过程,它帮助智能体跳出局部最优,以寻找可能的全局最优策略。 除了核心元素,深度强化学习还包含一些重要的机制,这些机制在提升智能体学习效率和性能方面起着关键作用。注意力和记忆(Attention and Memory)机制让智能体能够聚焦于环境中最重要的信息,并记住历史信息以辅助决策;无监督学习(Unsupervised Learning)可以用来预训练深度网络或作为辅助学习任务来增强学习效率;迁移学习(Transfer Learning)能够让智能体将在一个任务上学习到的知识迁移到其他任务上;多智能体强化学习(Multi-Agent RL)则研究多个智能体之间如何互动和协作;层次强化学习(Hierarchical RL)涉及将复杂任务分解为子任务,从而简化学习过程;学习如何学习(Learning to Learn)使得智能体能够改进其学习过程本身,提高学习速度和泛化能力。 深度强化学习的应用领域非常广泛,包括但不限于以下方面: 1. 游戏:AlphaGo是最著名的应用之一,它通过深度强化学习在围棋领域打败了世界冠军。 2. 机器人:机器人通过深度强化学习可以学会完成复杂的任务,比如操作物体、导航等。 3. 自然语言处理:通过深度强化学习,对话系统、机器翻译和文本生成等任务可以实现更自然和有效的交互。 4. 计算机视觉:深度强化学习可以帮助智能体识别和理解视觉信息,完成分类、检测和分割等任务。 5. 神经架构设计:深度强化学习被用于自动设计高效的神经网络架构。 6. 商业管理、金融、医疗、工业4.0、智能电网、智能交通系统、计算机系统等领域:深度强化学习同样可以应用在这些领域中,提高效率和性能。 深度强化学习是当前人工智能研究中极为活跃的前沿领域之一,它的进步不仅推动了理论的发展,更带动了实际应用的革新。随着深度学习和强化学习的理论与技术的不断发展,深度强化学习的研究和应用前景将更加广阔。
2025-07-03 17:40:37 653KB 强化学习
1
【Hierarchical RL】动态分层强化学习(DHRL)算法代码 动态分层强化学习,Dynamic Hierarchical Reinforcement Learning (DHRL) 是一种自适应分层强化学习算法,其目标是根据任务和环境的复杂性动态地构建、修改和利用分层策略。DHRL 不仅仅是预定义层次结构的简单执行,而是允许代理在学习过程中根据需要动态生成和调整分层策略,从而实现更好的任务分解和高效学习。 DHRL 扩展了传统的分层强化学习(HRL),通过动态调整层次和策略,使其适应环境中的变化和不确定性。这种方法能够处理复杂任务,特别是那些需要灵活调整策略或面临多种不同子任务的情景。
1
作为人工智能领域的热门研究问题,深度强化学习自提出以来,就受到人们越来越多的关注。目前,深度强化学 习能够解决很多以前难以解决的问题,比如直接从原始像素中学习如何玩视频游戏和针对机器人问题学习控制策略,深度强 化学习通过不断优化控制策略,建立一个对视觉世界有更高层次理解的自治系统。其中,基于值函数和策略梯度的深度强化 学习是核心的基础方法和研究重点。本文对这两类深度强化学习方法进行了系统的阐述和总结,包括用到的求解算法和网络 结构。首先,概述了基于值函数的深度强化学习方法,包括开山鼻祖深度Q 网络和基于深度Q 网络的各种改进方法。然后 介绍了策略梯度的概念和常见算法,并概述了深度确定性策略梯度 深度强化学习(Deep Reinforcement Learning, DRL)是人工智能领域中的一个重要分支,它结合了深度学习的表征能力与强化学习的决策制定机制。本文由刘建伟、高峰和罗雄麟共同撰写,深入探讨了基于值函数和策略梯度的DRL方法。 一、基于值函数的深度强化学习 值函数在强化学习中用于评估状态的价值或策略的期望回报。深度Q网络(Deep Q-Network, DQN)是这一领域的里程碑式工作,它解决了传统Q学习的两个关键问题:经验回放缓存(experience replay)和固定目标网络(fixed target network)。DQN通过神经网络学习状态动作值函数Q(s, a),并使用贝尔曼最优方程进行更新。随后出现了许多DQN的变体,如Double DQN、 Dueling DQN等,旨在减少过估计,提高学习稳定性。 二、策略梯度方法 策略梯度是另一种强化学习策略,它直接优化策略参数,以最大化期望回报。这种方法的优点是可以处理连续动作空间。文章介绍了策略梯度的基本概念,并讨论了如REINFORCE算法。此外,还提到了深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)算法,它适用于连续动作空间的问题,通过引入actor-critic结构和经验回放缓存来稳定学习过程。 三、其他深度强化学习方法 除了DQN和DDPG,文章还提及了信赖域策略优化(TRUST Region Policy Optimization, TRPO)和异步优势演员评论家(Accelerated Advantage Actor-Critic, A3C)等策略梯度的变种。TRPO通过约束策略更新的幅度,保证了策略的稳定性,而A3C则利用多线程异步更新,提高了学习速度。 四、前沿进展:AlphaGo与AlphaZero AlphaGo是谷歌DeepMind团队开发的围棋AI,它通过深度学习和蒙特卡洛树搜索结合,击败了世界冠军。AlphaZero是AlphaGo的升级版,不再依赖人类知识,仅通过自我对弈就能掌握多种棋类游戏的顶尖水平。AlphaZero的成功表明,基于深度强化学习的方法可以实现通用的游戏策略学习。 五、未来展望 随着技术的发展,深度强化学习的应用将更加广泛,如机器人控制、自动驾驶、资源调度等领域。未来的研究方向可能包括更高效的算法设计、更好的泛化能力、以及处理高维度和连续状态/动作空间的能力。同时,解决现实世界中的延迟问题、探索环境不确定性以及提高学习效率也是重要的研究课题。 总结,深度强化学习通过值函数和策略梯度方法,实现了从原始输入数据中自动学习高级行为的突破。这些方法的不断发展和完善,不仅推动了人工智能的进步,也为实际问题的解决提供了强大的工具。
2025-06-26 11:02:08 1.35MB 深度学习 强化学习 深度强化学习
1
强化学习是机器学习的一个重要分支,它关注于如何基于环境反馈来做出决策,从而达到某种长期最优目标。强化学习的关键点在于学习如何在不确定的环境中,通过与环境的交互过程,发现一系列的行动规则,即策略,使代理人在特定的任务中得到最大的累积奖励。强化学习算法通常可以分为基于模型的和无模型的方法。基于模型的方法,如动态规划,通过构建环境模型(包括状态转移概率和奖励函数)来预测未来的状态并做出决策。而无模型的方法,如Q-learning和SARSA,不需要构建环境模型,而是直接从交互中学习最优策略,通常通过试错的方式来优化策略。 时间差分(TD)学习是一种结合蒙特卡洛方法和动态规划优点的强化学习算法。它在每次更新时都结合了即时奖励和估计值来更新当前状态的值,可以在线学习,无需等待回合的结束。在时间差分学习中,值更新规则是用来更新状态值函数或动作值函数的,例如Q学习中会使用到Q值的更新公式。 在马尔可夫决策过程中,贝尔曼方程是强化学习中非常重要的概念。它提供了一种计算状态值或动作值的递归方法。贝尔曼最优方程是贝尔曼方程的一种特殊情况,它用于找到最优状态值函数或最优动作值函数。贝尔曼最优方程会考虑所有可能行动中的最大值,从而得到最佳的状态值。 值迭代和策略迭代是解决马尔可夫决策过程中的两种主要方法。值迭代是通过不断地评估和更新状态值函数来逼近最优策略,其收敛条件通常是指状态值函数的更新量小于某个阈值。策略迭代则包括策略评估和策略改进两个步骤,其中策略评估是通过迭代计算每个状态的值来更新策略,而策略改进是根据当前的值函数生成一个更好的策略。在策略迭代中,策略评估的过程会影响值函数的收敛性,因为只有准确评估策略后才能进行有效的策略改进。 在强化学习的具体应用中,SARSA和Q-learning是两种常用的无模型方法。SARSA是on-policy的学习算法,意味着它在学习当前执行策略的同时,也考虑后续行动的策略。而Q-learning是off-policy的学习算法,它不直接考虑当前的行动策略,而是关注在最优策略下,状态转移后的动作价值。在相同的更新参数下,SARSA依赖于当前策略,而Q-learning则关注最大可能的未来价值。 在进行强化学习的学习和应用时,需要熟练掌握上述算法原理及其应用,这样才能在面对不同的问题和环境时,选择合适的方法,并成功地训练出能完成指定任务的智能体。强化学习作为人工智能领域的一个重要方向,不仅在理论研究上有着深远的影响,而且在实际应用中,如机器人控制、游戏AI、自动驾驶等领域都有着广泛的应用前景。
2025-06-20 17:16:10 313KB
1
强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏中达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。
2025-06-20 16:32:13 93KB 强化学习
1
内容概要:本文详细探讨了强化学习中的DDPG(深度确定性策略梯度)算法及其在控制领域的应用。首先介绍了DDPG的基本原理,即一种能够处理连续动作空间的基于策略梯度的算法。接着讨论了DDPG与其他经典控制算法如MPC(模型预测控制)、鲁棒控制、PID(比例积分微分控制)和ADRC(自抗扰控制)的结合方式,展示了它们在提高系统性能方面的潜力。文中还提供了具体的编程实例,包括Python和MATLAB代码片段,演示了如何构建DDPG智能体以及将其应用于机械臂轨迹跟踪、自适应PID控制和倒立摆控制等问题。此外,强调了MATLAB Reinforcement Learning工具箱的作用,指出它为实现这些算法提供了便捷的方法。 适合人群:对控制理论有一定了解的研究人员和技术爱好者,特别是那些希望深入了解强化学习与传统控制方法结合的人群。 使用场景及目标:适用于需要解决复杂非线性系统控制问题的场合,如机器人运动规划、自动化生产线管理等领域。目标是通过引入DDPG算法改进现有控制系统的响应速度、精度和鲁棒性。 其他说明:文章不仅涵盖了理论层面的知识,还包括大量实用的操作指南和代码示例,有助于读者快速掌握相关技能并在实践中加以运用。同时提醒读者关注算法融合时的一些关键细节,比如奖励函数的设计、混合比例的选择等。
2025-06-14 21:33:21 1.06MB
1
强化学习领域,期末考试的题目通常覆盖了该领域的重要概念和方法。根据提供的文件内容,我们可以提炼出以下知识点: 知识点一:折扣因子(Discount Factor) 在网格世界中,折扣因子γ用于决定未来奖励的当前价值。γ的取值范围在0到1之间。一个折扣因子γ=0.9意味着未来的奖励比当前奖励的价值要低。 知识点二:状态转移和奖励(State Transitions and Rewards) 在强化学习中,状态转移是指当采取特定动作时,智能体从一个状态转移到另一个状态的概率。奖励则是在状态转移过程中得到的即时反馈。例如,在网格世界中,从状态s1向右转移至状态s2时,奖励为1。 知识点三:贝尔曼方程(Bellman Equation) 贝尔曼方程用于描述强化学习中的最优策略和最优价值函数。它是递归的,并且可以用来更新状态价值函数。对于给定的网格世界,各个状态的贝尔曼方程可以用来计算每个状态的期望累积奖励。 知识点四:蒙特卡洛方法(Monte Carlo Methods) 蒙特卡洛方法是一种在强化学习中使用随机采样来估计状态值或动作值的算法。由于它依赖完整的回报轨迹,因此属于离线算法,即需等待回合结束才能更新状态值。 知识点五:时间差分方法(Temporal Difference, TD) 时间差分方法是一种结合动态规划和蒙特卡洛方法优点的算法。TD方法使用估计的状态值进行逐步更新,属于在线算法,即可以实时学习和更新状态值,无需等待整个回合结束。 知识点六:SARSA算法和Q-learning算法 SARSA算法是on-policy方法,即学习和更新过程都基于当前所用策略。它使用当前策略选择的下一个行动的Q值进行更新。而Q-learning算法是off-policy方法,学习和更新过程可以独立于当前所用策略,它使用下一个状态所有可能行动的最大Q值进行更新。 知识点七:值迭代(Value Iteration)与策略迭代(Policy Iteration) 值迭代是通过迭代更新状态价值函数来逼近最优价值函数,每一步都更新为最大动作价值。策略迭代则包括策略评估和策略改进两个主要步骤,通过评估和改进策略来实现最优决策。 知识点八:马尔科夫决策过程(Markov Decision Process, MDP) MDP是强化学习的基础概念,包括状态集合、动作集合、转移概率、奖励函数和折扣因子。MDP用来描述智能体在环境中进行决策的随机过程。 知识点九:状态-行动值函数(Action-Value Function) 状态-行动值函数表示给定状态和动作下,未来期望奖励的评估。Q函数可以用来选择最佳行动并学习策略。 知识点十:学习率(Learning Rate) 学习率α是控制学习过程中参数更新程度的一个超参数。在强化学习中,学习率决定了新信息覆盖旧信息的快慢。 以上知识点涉及了强化学习的诸多核心概念和算法,这些知识对于理解强化学习的工作原理和实现有效的学习策略至关重要。
2025-06-12 22:25:05 332KB
1
Alphago zero背后的算法实现五子棋游戏+带游戏界面。适合想学习alphazero算法的初学者,非常具有教学意义的代码。
2025-06-11 13:25:13 454KB alphazero 五子棋 强化学习 mcts
1
强化学习课程报告,高分98强化学习课程报告,高分98强化学习课程报告,高分98强化学习课程报告,高分98强化学习课程报告,高分98强化学习课程报告,高分98强化学习课程报告,高分98
2025-06-10 11:35:02 709KB 课程资源
1