使用Q学习算法实现强化学习-迷宫中的机器人-Matlab_Implementation of Reinforcement learning using Q learning algorithm- Robot in Maze - Matlab.zip Q学习是一种无模型的强化学习算法,它允许智能体在一个环境中通过试错的方式学习出在不同状态下采取何种行为以最大化获得奖励的可能性。在迷宫中应用Q学习算法,智能体的目标是学习一条从迷宫起点到终点的最优路径,期间需要面对从简单到复杂的各种环境障碍和状态转移规则。 在使用Q学习算法解决机器人在迷宫中的问题时,首先需要定义环境。迷宫可以被建模为一个状态空间,每个可能的位置或者格子都可以是一个状态。智能体需要在这些状态之间进行移动,每次移动对应一个动作,例如向上、向下、向左或向右。智能体的每一步行动都会获得一个即时的奖励或惩罚,比如前进到目标点可获得正奖励,撞墙则获得负奖励或零奖励。 算法的核心是Q表,它是一个用来记录智能体在每个状态下采取每种可能行为的预期回报的表格。随着智能体的探索,Q表中的值会逐渐更新。Q学习更新规则可以表示为Q(s,a)的新值,它是基于当前的Q(s,a)值和一系列其他参数,包括学习率、折扣因子以及下一个状态的最大预期回报。 Q学习算法的步骤如下: 1. 初始化Q表,将所有状态行为对的值设为某个起始值,通常为零。 2. 将智能体放置在迷宫的起点。 3. 在每一步,智能体根据当前的Q表选择一个行为。 4. 执行选定的行为,观察新的状态和即时奖励。 5. 使用Q学习规则更新Q表。 6. 将智能体移动到新的状态。 7. 重复步骤3至6,直到智能体达到迷宫的终点。 在MATLAB环境中实现Q学习算法,可以利用MATLAB的矩阵操作和算法开发能力,通过编写脚本或函数来模拟智能体的学习过程。MATLAB的图形用户界面也可以用来展示智能体在迷宫中的学习和探索过程,通过动画或实时更新迷宫图来直观地呈现智能体的学习动态。 为了提高Q学习算法的效率,可以采用一些改进策略,如使用探索策略来平衡学习过程中的探索与利用,使用函数逼近方法代替传统的Q表以处理大规模或连续状态空间的问题。此外,还可以研究智能体如何在不同的迷宫环境中泛化它们的学习经验,以及如何将Q学习与其他强化学习方法结合起来,以解决更复杂的问题。 通过这些方法,Q学习算法不仅能够帮助机器人找到迷宫中的最短路径,还能在更广泛的应用场景中,例如自动驾驶车辆的路径规划、机器人的自主导航、游戏AI的策略制定等领域发挥作用。通过MATLAB实现Q学习,研究者和工程师可以快速原型化和验证各种强化学习策略,并在实际问题中部署和应用这些智能算法。
2026-01-16 03:06:48 109KB
1
Matlab武动乾坤上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2026-01-16 02:07:33 4.71MB matlab
1
多智能体强化学习是深度强化学习领域中的一个高级主题,涉及到多个智能体(agent)在同一个环境中协同或者竞争以实现各自或者共同的目标。在这一领域中,智能体需要学习如何在交互中进行决策,这是通过强化学习的框架来实现的,其中智能体根据与环境交互所获得的奖励来改进其策略。 IPPO,即Importance Weighted Proximal Policy Optimization,是一种算法,它是在Proximal Policy Optimization(PPO)算法的基础上发展而来的。PPO是一种流行的策略梯度方法,它旨在通过限制策略更新的幅度来提高训练的稳定性。PPO通过引入一个截断概率比率来防止更新过程中产生的过大的策略改变,从而避免了性能的大幅波动。而IPPO进一步引入了重要性加权的概念,允许每个智能体在多智能体场景中对其他智能体的行动给出不同的重视程度,这在处理大规模或者异质智能体时尤其有用。 PyTorch是一个开源的机器学习库,主要用于计算机视觉和自然语言处理领域的研究和开发。PyTorch提供了强大的GPU加速的张量计算能力,并且拥有一个易于使用的神经网络库,使得研究人员和开发者可以快速地设计和训练深度学习模型。在多智能体强化学习的研究中,PyTorch提供了极大的灵活性和便捷性,能够帮助研究者更快地将理论转化为实际应用。 《多智能体强化学习 IPPO PyTorch版》这本书,从代码学习的角度出发,通过实际的代码实现来引导读者深入了解多智能体强化学习中的IPPO算法。书中可能包含以下几个方面的知识点: 1. 强化学习的基础知识,包括马尔可夫决策过程(MDP)、价值函数、策略函数等概念。 2. 智能体如何在环境中采取行动,以及如何基于状态和环境反馈更新策略。 3. PPO算法的核心思想、原理以及它如何在实际应用中发挥作用。 4. IPPO算法相较于PPO的改进之处,以及重要性加权的具体应用。 5. PyTorch框架的使用,包括其张量运算、自动梯度计算等关键特性。 6. 如何在PyTorch中构建和训练多智能体强化学习模型。 7. 实际案例研究,展示IPPO算法在不同多智能体环境中的应用。 8. 调试、评估和优化多智能体强化学习模型的策略和技巧。 在学习这本书的过程中,读者能够通过阅读和修改代码来获得实践经验,这将有助于他们更好地理解多智能体强化学习算法,并将其应用于实际问题中。这本书适合那些有一定深度学习和强化学习背景的读者,尤其是希望深入了解和实现多智能体强化学习算法的研究生、研究人员和工程师。
2026-01-13 09:07:26 4.38MB
1
随着物联网(IoT)技术的快速发展和智能设备的广泛部署,边缘计算作为一种新兴的计算范式,正受到越来越多的关注。边缘计算通过将计算任务从云中心下沉到网络边缘,即接近数据生成的源头,从而能够减少数据传输延迟,提高响应速度,并有效降低网络带宽的消耗。这在移动应用、自动驾驶车辆、工业物联网等领域具有重大的应用潜力。 在边缘计算的诸多研究领域中,计算卸载(Computing Offloading)是关键的技术之一。计算卸载涉及的是将部分或全部计算任务从本地设备转移到边缘服务器上的处理过程。由于边缘服务器通常具有更高的计算能力和更丰富的资源,因此它可以提供比本地设备更快的处理速度和更好的用户体验。然而,如何决定哪些计算任务需要被卸载,以及如何在边缘服务器之间高效地分配计算资源,是一个复杂的优化问题。 深度强化学习(Deep Reinforcement Learning,DRL)是机器学习领域的一种前沿技术,它结合了深度学习(Deep Learning,DL)的强大特征提取能力和强化学习(Reinforcement Learning,RL)在处理决策问题上的优势。在边缘计算中,深度强化学习可以被用来设计智能的计算卸载策略,通过与环境的交互学习最优的卸载决策,从而实现资源的高效利用和任务的快速响应。 在本压缩包文件中,我们可以看到包括了多个关键文件,比如mec_dqn.py和mec.py等。其中,mec_dqn.py很可能包含了使用深度Q网络(Deep Q-Networks,DQN)算法实现的计算卸载决策模型。DQN是一种经典的深度强化学习算法,它使用深度神经网络来近似Q值函数,使得算法能够处理连续的或大规模的状态空间。而mec.py文件则可能涉及边缘计算的总体框架设计,包括资源分配、任务调度和通信管理等方面。 README.md文件通常包含项目的基本介绍、安装指南、使用说明以及可能存在的问题解答,对于理解整个项目和运行环境提供了指导。而.figure、draw、script和log文件夹则分别存储了项目中的图表、绘图代码、脚本和日志信息,这些都是项目运行过程中不可或缺的辅助文件。 由于边缘计算的计算卸载和资源分配问题本质上是一个复杂决策优化问题,传统的优化方法很难直接应用。而通过深度强化学习,尤其是DQN算法,可以构建一个能够自我学习和适应网络状态变化的智能决策系统。该系统可以根据实时的网络环境、计算任务需求和边缘服务器的资源状态来动态地做出计算卸载决策,达到优化系统性能的目的。 边缘计算结合深度强化学习为智能计算卸载和资源分配提供了全新的视角和解决方案。这不仅能够有效提高边缘计算系统的性能,而且对于推动智能网络的发展具有重要的理论意义和应用价值。
2026-01-02 21:29:00 625KB
1
一种基于深度强化学习 (DRL) 的面向 QoE 的计算卸载算法 资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
2026-01-02 21:17:09 9.83MB 深度学习
1
内容概要:本文详细探讨了利用双延迟深度确定性强化学习策略提取(RL-TD3)对永磁同步电机(PMSM)进行磁场定向控制的方法。首先介绍了RL-TD3相较于传统DDPG算法的优势,即通过引入双延迟机制提高算法的稳定性和收敛性。接着展示了具体的Python代码实现,包括策略网络和价值网络的设计,以及如何构建仿真环境并定义奖励函数。文中强调了RL-TD3在速度与电流控制方面的优越性和鲁棒性,特别是在面对电机参数变化和负载扰动时的表现。此外,还讨论了模型复现过程中的一些关键技术细节,如经验回放池的使用、目标网络的软更新方式等,并提出了若干潜在的研究方向和技术改进措施。 适合人群:从事电机控制领域的研究人员、工程师,以及对强化学习应用于工业自动化感兴趣的学者和学生。 使用场景及目标:适用于希望深入了解强化学习在PMSM控制中具体应用的读者;旨在帮助读者掌握RL-TD3算法的工作原理及其在实际工程问题中的实施步骤;鼓励读者基于现有成果开展进一步的研究和创新。 其他说明:文章提供了完整的代码示例和详细的解释,便于读者理解和复现实验结果。同时指出了可能存在的挑战和解决方案,为后续研究奠定了坚实的基础。
2025-12-19 16:27:12 327KB
1
内容概要:本文研究基于深度强化学习的多无人机辅助边缘计算网络路径规划,旨在通过深度强化学习技术优化多无人机在复杂环境下的飞行路径,以提升边缘计算网络的服务效率与资源利用率。文中结合Matlab代码实现,详细探讨了多无人机协同工作的路径规划模型,涵盖任务分配、避障、能耗优化等关键问题,有效支持边缘计算场景下的低延迟、高可靠通信需求。; 适合人群:具备一定编程基础和无人机、边缘计算或强化学习背景的科研人员及研究生;适用于从事智能优化、路径规划或网络资源调度相关方向的研究者。; 【无人机路径规划】基于深度强化学习的多无人机辅助边缘计算网络路径规划(Matlab代码实现) 使用场景及目标:①解决多无人机在动态环境中高效执行边缘计算任务的路径规划问题;②探索深度强化学习在复杂多智能体系统协同控制中的实际应用;③为边缘计算网络提供低延迟、高稳定性的无人机辅助通信方案。; 阅读建议:建议结合提供的Matlab代码进行实践,重点关注算法模型的设计思路与仿真实验设置,深入理解深度强化学习在路径规划中的训练机制与优化策略。
1
【1】该资源属于项目论文,非项目源码,如需项目源码,请私信沟通,不Free。 【2】论文内容饱满,可读性强,逻辑紧密,用语专业严谨,适合对该领域的初学者、工程师、在校师生等下载使用。 【3】文章适合学习借鉴,为您的项目开发或写作提供专业知识介绍及思路,不推荐完全照抄。 【4】毕业设计、课程设计可参考借鉴! 重点:鼓励大家下载后仔细研读学习,多看、多思考!
2025-12-14 19:08:29 5.36MB 毕设论文 课程论文 学习资源 课程设计
1
这是同时进行所有32个级别的培训的10秒快照。 当前任务 创建一个新的GameRunner类以运行多个级别并将结果同步到一个主模型中。 例如,不是在一个级别上进行训练,而是在所有32个级别上进行训练(并行!),然后更新模型。 其他任务 替换整洁的python库(可能是为了娱乐而创建一个自定义库) 构建自定义检查点系统(或了解如何解决整洁的Python索引错误) 添加有关如何生成“良好”配置文件的信息-时间戳为1566017738的配置是“最佳”配置之一 绘制随机超参数作为人口规模的函数。 看看前20个左右的人口是否少。 将此添加到自述文件。 使用自述文件将生成的数据移至外部存储,其中每个数据文件夹分别是什么以及是否已在其上运行实验。 (此存储库中未包括的数据为许多GB,但应保留其中一些数据以作进一步研究。) 完成主自述文件:) 添加有关使用一些数据和图形进行超参数搜索的文档。 有
2025-12-14 16:44:03 24.58MB Python
1
基于TD3强化学习算法解决四轴飞行器悬浮任务
2025-12-02 23:55:55 10.75MB 强化学习 ddpg
1