时间序列是一类重要的时间数据对象,可以很容易地从科学和金融应用中获得,并且时间序列的异常检测已成为当前的热门研究课题。 这项调查旨在提供有关异常检测研究的结构化和全面的概述。 在本文中,我们讨论了异常的定义,并根据每种技术采用的基本方法将现有技术分为不同的类别。 对于每个类别,我们都会确定该类别中该技术的优缺点。 然后,我们简要介绍一下最近的代表性方法。 此外,我们还指出了有关多元时间序列异常的一些关键问题。 最后,讨论了有关异常检测的一些建议,并总结了未来的研究趋势,有望对时间序列和其他相关领域的研究者有所帮助。
2024-10-27 21:34:43 202KB time series; anomaly detection;
1
无监督异常检测库 可用算法: 神经网络 神经网络 LOF(以scikit-learn软件包提供) COF INFLO 环形 LOCI 阿罗西 克洛夫 微博 数码相机 CMGOS HBOS 前列腺癌 CMGOS 一类SVM(可在scikit-learn软件包中获得) @作者Iskandar Sitdikov
2024-09-04 10:09:36 6KB python clustering kmeans unsupervised-learning
1
以徐州矿务集团有限公司垞城煤矿22109工作面压架事故为背景,基于砌体梁、关键层、"S-R"稳定性理论,综合分析了4起采场异常矿压显现特征,通过采场覆岩空间结构对比,覆岩运动规律计算验证,揭示了多坚硬层结构覆岩条件下采场"双滑落失稳矿压异常显现"机理,明确了多坚硬层覆岩结构条件下采场异常矿压预测与技术控制方向。
2024-07-16 08:46:55 486KB 行业研究
1
egm2008 1角秒高程异常
2024-07-08 13:54:26 408.21MB egm2008 高程异常 地理信息
1
BRMM 类实现了用于模拟和估计有限混合模型参数的算法。 混合模型通常用于聚类分析,即将数据分组。 该模型专为包含异常值和/或缺失值的数据而设计。 BRMM 对象将每个原型建模为具有特定组件参数的重尾分布。 根据贝叶斯范式,参数配备了共轭先验分布。 该模型还包含表示数据中缺失值和数据质量的隐藏变量。 参数和隐藏变量的后验分布通过近似变分推理算法进行估计。 此提交包括一个测试函数,该函数生成一组合成数据并从这些数据中学习模型。 测试函数还绘制根据模型聚类的数据,以及每次迭代后数据的边际对数似然的变分下界。 如果您发现此提交对您的研究/工作有用,请引用我的 MathWorks 社区资料。 如果您有任何技术或应用相关问题,请随时直接与我联系。 指示: 下载此提交后,在您的 MatLab 工作目录中提取压缩文件并运行测试函数 (brmmtest.m) 进行演示。
2024-05-29 20:06:30 16KB matlab
1
基于孤立森林的代码实现
2024-05-25 19:42:19 1.66MB 异常检测
1
基于LSTM神经网络模型的日志异常检测 主要基于Deeplog实现 DeepLog - Anomaly Detection and Diagnosis from System Logs through Deep Learning (部分paper来源于知网,请尊重版权~)
2024-05-24 13:36:59 82.2MB Python
1
拟合算法-基于卫星高度计海面高度异常资料获取潮汐调和常数方法及应用.pdf
2024-05-23 15:34:34 4.78MB
问题描述: 1、使用可视化界面备份到共享文件夹时提示 “出现系统错误 5(拒绝访问)” 2、使用脚本执行时,同样报错 说明通过SQL SERVER访问远程地址出现异常,虽然本地系统已经可访问该共享文件夹 解决方案: 1、解锁 SQL SERVER “xp_cmdshell”命令 打开SQL SERVER 新建查询窗口 -- 允许配置高级选项 EXEC sp_configure 'show advanced options', 1 GO -- 重新配置 RECONFIGURE GO -- 启用xp_cmdshell EXEC sp_configure 'xp_cmdshell', 1 GO
2024-04-17 17:39:24 103KB SQL SQL Server
1
CICIDS2017数据集包含良性和最新的常见攻击,与真实的现实世界数据(PCAPs)相类似。它还包括使用CICFlowMeter进行网络流量分析的结果,并根据时间戳、源和目的IP、源和目的端口、协议和攻击来标记流量(CSV文件)。此外,还提供了提取的特征定义。 生成真实的背景流量是我们建立这个数据集的首要任务。我们使用了我们提出的B-Profile系统(Sharafaldin, et al. 2016)来描述人类互动的抽象行为并生成自然的良性背景流量。对于这个数据集,我们建立了基于HTTP、HTTPS、FTP、SSH和电子邮件协议的25个用户的抽象行为。Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv 2023-02-28 73.55MB Wednesday-workingHours.pcap_ISCX.csv 2023-02-28 214.74MB Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv 2023-02-28 73.34MB Friday-WorkingHours-Mo
2024-04-12 12:10:51 210.28MB 机器学习 python 数据集
1