COMSOL三维锂离子电池全耦合电化学热应力模型:模拟充放电过程中的多物理场耦合效应及电芯内应力应变情况,COMSOL锂离子电池热应力全耦合模型,comsol三维锂离子电池电化学热应力全耦合模型锂离子电池耦合COMSOL固体力学模块和固体传热模块,模型仿真模拟电池在充放电过程中由于锂插层,热膨胀以及外部约束所导致的电极的应力应变情况结果有电芯中集流体,电极,隔膜的应力应变以及压力情况等,电化学-力单向耦合和双向耦合 ,关键词: 1. COMSOL三维锂离子电池模型; 2. 电化学热应力全耦合模型; 3. 锂离子电池; 4. 固体力学模块; 5. 固体传热模块; 6. 应力应变情况; 7. 电芯中集流体; 8. 电极; 9. 隔膜; 10. 电化学-力单向/双向耦合。,COMSOL锂离子电池全耦合热应力仿真模型
2025-11-28 09:37:27 811KB
1
本项目旨在模拟应变式压力传感器的工作流程,通过调节滑动变阻器模拟应变,经惠斯通电路输出微小电压差,再利用同向放大电路对电压差进行放大(放大倍数遵循公式:\(A_v = 1 + \frac{R_{反馈}}{R_{输入}}\)),最后借助 STM32F103C8 的 ADC 模块完成模数转换,并通过串口将结果输出显示。项目也提供了基于 TC7107 进行 ADC 转换的相关资料参考。 有任何问题可以私信我,看到会回复的
2025-11-07 21:07:21 23.84MB proteus仿真
1
内容概要:本文介绍了ABAQUS主应力与应变数值及方向提取插件的功能和优势。该插件能自动读取ABAQUS的分析结果,提取并导出指定SET单元的主应力、主应变和各主方向向量坐标,支持按积分点导出。插件运行速度快,适用于大型模型的数据处理。此外,还附有详细的教学视频,帮助用户快速上手。 适合人群:从事有限元分析的工程师和技术人员,尤其是那些需要频繁处理复杂工程仿真数据的专业人士。 使用场景及目标:① 提取和导出指定SET单元的主应力、主应变和方向向量坐标;② 支持按积分点导出,提高数据精度;③ 利用高效的算法提升数据分析的速度和效率。 阅读建议:用户可以通过观看附带的教程视频,快速了解插件的安装和使用方法,从而更好地应用于实际工作中。
2025-11-05 11:31:44 943KB ABAQUS 工程仿真
1
ABAQUS数据解析插件:快速提取主应力、主应变及方向向量坐标,高效SET单元导出工具,ABAQUS插件:高效提取主应力、主应变及方向向量坐标,快速导出SET单元数据并附使用教程视频,ABAQUS主应力 应变数值与方向提取插件 按SET导出指定SET单元的主应力、主应变和各主方向向量坐标插件,按积分点导出。 运行速度快,附带使用教程视频。 ,核心关键词:ABAQUS; 主应力; 应变数值; 方向提取; 插件; 指定SET单元; 单元主方向向量坐标; 积分点导出; 运行速度快; 使用教程视频。,ABAQUS分析工具:主应力应变快速提取与方向定位插件
2025-11-05 11:12:49 3.09MB ajax
1
# 基于Arduino和Android的应变传感器测量系统 ## 项目简介 本项目是INSA Toulouse大学四年级物理工程课程项目,旨在创建一个针对纸张和石墨应变传感器的测量系统,可测量传感器电阻并将数据传输至安卓应用。 ## 项目的主要特性和功能 1. 为Arduino Uno设计的PCB盾牌,包含完整测量电路。 2. Arduino代码,负责控制电路、测量电阻及通过蓝牙模块发送数据。 3. 安卓APK应用,能通过蓝牙接收传感器数据,展示在界面上,还支持保存数据到文本文件。 4. 配备测试台与测试协议,提供测试环境和位移计算方法。 ## 安装使用步骤 ### 前提条件 已下载本项目的源码文件,且用户具备Arduino Uno、PCB盾牌、蓝牙模块、OLED屏幕、旋转编码器和传感器。 ### 具体步骤 1. 安装Arduino IDE、相关库和MIT App Inventor开发环境。
2025-10-21 22:48:38 3.61MB
1
论文针对复杂系统无线数据采集电路中电阻应变片直流电桥测量电路存在的问题进行了详细的分析,根据实际系统对灵敏度、功率等要求,合理地对增益电阻和滤波电容进行了选择,提出了一种行之有效的电阻应变片直流电桥无线数据采集测量电路的设计方案。经过测试证明该方案在数据采集系统中稳定、可靠。 在无线数据采集系统中,应变片直流电桥设计是一项至关重要的任务,尤其在面对复杂系统时。应变片主要用于监测机械系统中的微小变化,如应力、应变、摩擦力等,这些参数对于理解系统性能和优化设计至关重要。然而,由于机械内部环境恶劣,直接的有线连接会限制部件的运动,因此无线数据采集成为了首选。 无线数据采集系统通常包括传感器、电源、信号调理电路、信号处理电路和计算机。传感器,如应变片和热电偶,将物理信号转化为电信号,经过调理电路(包含升压芯片、电压基准、电桥、滤波和放大等组件)转换为0~2.5V的电压。在高采集频率下,数据量大,对系统的处理速度和存储能力有很高要求。因此,设计一个稳定、低功耗、高灵敏度的直流电桥测量电路是关键。 在设计电阻应变片直流电桥时,首先考虑的是电桥的灵敏度和功率。电桥的灵敏度与电源电压成正比,但功耗也随着电压增加而增大。通过分析公式,可以选择合适的电源电压和电桥电阻比例(n值),使得功耗降低的同时保持足够的灵敏度。例如,取n=1.5时,既能降低20%的功耗,又能确保灵敏度只下降4%。这样可以设定电桥中电阻的值,如4 R = 525Ω,1 R = 2KΩ,2 R = 3KΩ,并通过固定电阻的串并联实现。 接下来,需要计算放大倍数并选择增益电阻。根据输出电压范围和已知的电桥供电电压,可以确定R7和R8的值,这里选择R7 = 5.1KΩ,R8 = 360KΩ,以适应预期的应变范围。 滤波电容的选择也是必要的,用以减少电磁干扰和系统自身产生的噪声,提高信号质量。在体积有限的情况下,一般采用简单的阻容滤波器。 此外,应变片受环境温度影响,会产生温度误差。虽然没有采用差动补偿,但在标定阶段,可以通过获取应力-应变和温度-应变关系,来计算并补偿温度变化带来的误差。 总结来说,设计无线数据采集系统中的电阻应变片直流电桥,需要综合考虑灵敏度、功率效率、抗干扰能力、温度补偿等多个因素。这样的设计能够确保在复杂机械系统中,即使在恶劣环境下也能稳定、准确地采集和传输数据,为系统分析和优化提供可靠的数据支持。设计者可以根据实际应用需求,灵活调整参数,以满足特定的测量条件和环境。
2025-10-10 16:19:41 326KB 无线数据采集 直流电桥 电子竞赛
1
提出了一种以MSP430F149为主控芯片、nRF24L01为无线传输芯片、AD627为前置放大器的低功耗无线应变传感器的设计方案,给出了该传感器的总体结构,详细介绍了该传感器数据采集发射子系统的软硬件设计方法,并对该传感器进行了能耗分析和测试,得出了该传感器的能耗公式。经理论计算,该无线应变传感器的平均电流消耗为32μA,比现有无线应变传感器的能耗低;测试结果与理论分析结果基本一致,且电池使用寿命可达70h以上。
1
应变电阻式压力传感器同时测压力与温度,分析了温度引起的误差。
2025-09-10 17:04:55 334KB 压力传感器
1
### 常温静态应变测量方法、公式及计算 #### 一、常温静态应变测量概述 常温静态应变测量是一种重要的力学测试手段,主要用于研究构件在静态载荷作用下的应力应变分布规律、强度问题以及局部应力集中等。通过这种测量方法可以深入理解结构件的工作性能,为设计优化提供科学依据。 #### 二、常温静态应变测量的目的 1. **研究构件的应力应变分布规律**:通过对不同部位的应变测量,可以了解整个结构件的受力情况及其内部应力分布。 2. **研究构件的强度问题**:通过测量特定部位的最大应变值,结合材料的强度指标,评估结构的安全性。 3. **研究构件局部位置的应力集中**:在结构件的关键部位进行测量,发现可能存在的应力集中现象,为防止裂纹的形成提供依据。 4. **研究构件所受的载荷状况**:通过测量实际工况下的应变值,可以推算出结构件承受的实际载荷大小和类型。 #### 三、常温静态应变测量的一般步骤 1. **确定测量方案**:根据测量目的选择测点位置、确定应变计的布置方式以及组桥方案。测点位置的选择通常基于理论分析结果或参考相似结构的测量经验。组桥方案需考虑测点的应力状态、构件的受载情况以及温度补偿等因素。 2. **选择应变计**:根据被测构件的具体情况(如尺寸、材料特性等)选择合适的应变计类型。常见的应变计类型包括全桥、半桥和四分之一桥等。 3. **测量仪器及设备选择和检测**:选择适合的测量仪器(如手动平衡的静态电阻应变仪或自动记录的数字式应变仪),并确保其处于良好状态。 4. **应变计的安装、接线、防护和检查**:正确的安装和接线是保证测量准确性的关键环节。此外,还需要对接线进行必要的防护措施,避免外界干扰。 5. **测量**:正式测量前进行调试,确保所有设备正常工作。在加载测量时,通常会进行多次重复以提高数据的可靠性。 6. **测量结果分析及完成报告**:对采集的数据进行分析处理,将其转换成应力或主应力等物理量。最后撰写报告,总结测量结果,并对其进行精度评价。 #### 四、应变测量中的稳定性问题 在常温静态应变测量中,稳定性是非常重要的考量因素。测量系统的稳定性直接影响到最终数据的可靠性和准确性。为了保证测量结果的稳定性,需要注意以下几个方面: 1. **绝缘电阻的影响**:良好的绝缘电阻可以有效减少外界因素对测量结果的影响。一般要求绝缘电阻不低于100MΩ。当绝缘电阻下降时,会在应变计上并联一个额外的电阻,这会导致桥臂电阻值的变化,进而影响测量结果的准确性。 2. **温度补偿**:温度的变化也会对应变测量结果造成影响。因此,在设计测量方案时需要考虑温度补偿的措施,比如使用温度补偿应变计等。 3. **测量仪器的稳定性**:确保使用的测量仪器本身具有良好的稳定性,不会因长时间工作而产生显著的误差。 #### 五、公式与计算 在常温静态应变测量中,经常会用到以下公式来计算由绝缘电阻变化引起的桥臂电阻变化量: \[ \Delta R_{n} = \frac{R_{n}\Delta R_{n}}{R_{n} + R_{n} + \Delta R_{n}} \] 其中,\(R_{n}\)为应变计的绝缘电阻,\(\Delta R_{n}\)为绝缘电阻的变化量。进一步地,可以通过下式计算出由绝缘电阻变化导致的应变仪读数漂移: \[ \epsilon_{n} = K\frac{\Delta R_{n}}{R_{n} + R_{n} + \Delta R_{n}} \] 这里,\(K\)为应变计的灵敏系数。 ### 结论 通过对常温静态应变测量方法的详细探讨,我们可以看到这种方法在工程实践中具有广泛的应用价值。通过精心设计测量方案、选用合适的应变计和测量仪器、注意绝缘电阻等因素的影响,可以有效提高测量结果的准确性和可靠性。这对于深入理解和优化结构件的设计至关重要。
2025-08-30 18:03:24 756KB 电测应力 计算公式
1
 以24位工业模数转换器ADS1278为核心,设计了一个高精度微应变信号采集系统,给出对应的前端调理电路和数字采集模块等。模拟测试结果显示,该系统方案可行,可有效采集微应变信号,已成功应用于桥梁振动检测等产品。
2025-08-14 11:33:46 692KB 高精度采集
1