这是使用BERT进行序列注释和文本分类的模板代码,方便大家将BERT用于更多任务。欢迎使用这个BERT模板解决更多NLP任务,然后在这里分享你的结果和代码。
2022-06-21 02:11:34 2.47MB Python开发-自然语言处理
1
随着多数生物基因组测序工作的完成,基因识别就显得尤为重要.CpG岛在基因组中有着重要的生物学意义,因此识别CpG岛将有助于基因的识别.目前已经构建的一些识别CpG岛的位置的模型大都存在标注偏差、需要独立假设等缺点,为此提出一种基于条件随机场(CRFs)模型的CpG岛的位置识别的新方法.该方法将识别CpG岛的位置的问题转化为序列标记问题,并根据CpG岛的位置的性质设计了相应的模型构建、训练以及解码的算法.利用本文算法可以对输入序列确定最有可能的标注序列,从而识别CpG岛的位置.通过对标准数据库的数据进行测试,其实验结果表明本文算法是可行的、高效的,比HMM方法有更高的准确率.
1
BiLSTM + CRF用于顺序标记任务 :rocket: :rocket: :rocket: BiLSTM + CRF模型的TensorFlow实现,用于序列标记任务。 项目特色 基于Tensorflow API。 高度可扩展; 一切都是可配置的。 模块化,结构清晰。 对初学者非常友好。 容易DIY。 任务与模型 Sequential labeling是对NLP中的序列预测任务进行建模的一种典型方法。 常见的顺序标记任务包括例如 词性(POS)标记, 块, 命名实体识别(NER) 标点恢复 句子边界检测 范围检测 中文分词(CWG) , 语义角色标签(SRL) 口语理解能力 事件提取 等等... 以命名实体识别(NER)任务为例: Stanford University located at California . B-ORG I-ORG O O B-LOC O 在这里,将提取两个实体, Stanford University和California 。 特别是,文本中的每个token都用相应的label 。 例如
2021-12-01 11:51:53 73.89MB nlp tensorflow ner python35
1
Neural (LSTM) version of the partial CRF model
2021-10-20 15:15:58 23KB Python开发-自然语言处理
1