ADC 50 60 Hz 控干扰的抑制技术 许多工业设置需要抑制50 Hz和60 Hz干扰。本应用笔记介绍如何使用AD7708/AD7718、AD7709、AD7719、AD7782/AD7783 Σ-Δ型ADC实现这些频率的最佳抑制。 ### ADC 50 60 Hz 干扰抑制关键技术解析 #### 一、引言 在众多工业场景中,特别是那些需要使用高精度模数转换器(Analog-to-Digital Converter, ADC)进行数据采集的应用中,来自电力系统的50Hz和60Hz干扰常常成为一大难题。本文将详细介绍如何通过合理配置AD7708/AD7718、AD7709、AD7719、AD7782/AD7783等Σ-Δ型ADC来实现对这些频率的高效抑制。 #### 二、电力线路频率及其干扰 全球范围内的交流电频率主要分为两种标准:50Hz和60Hz。这些频率可能会通过电源变压器、无屏蔽电缆或电气设备辐射等方式对电信号造成干扰。除了基频干扰外,还可能存在其谐波成分,如100Hz、120Hz等,尽管这些谐波的强度通常低于基频。由于实际电网频率可能在50Hz或60Hz的基础上波动±1Hz,因此在使用高分辨率ADC测量低电平信号时,交流电干扰会成为一个严重的挑战。 #### 三、干扰抑制方法 ##### 1. 差分信号技术 若系统具备良好的共模抑制能力,则可以通过使用差分信号来抑制共模50Hz/60Hz干扰。然而,这种方法无法有效解决正常模式干扰问题。 ##### 2. 模拟滤波器 使用低通模拟滤波器是一种减少干扰的传统方法。为了有效地抑制50Hz和60Hz的干扰,滤波器通常需要有较低的截止频率和较高的阶次。但这不仅限制了可测量信号的带宽,而且高阶模拟滤波器的成本较高且占用较大的电路板空间。此外,模拟滤波器的截止频率容易受温度等因素的影响而发生变化。 ##### 3. 数字滤波器 数字滤波器作为替代方案,可以在特定的电力线路频率下实现优秀的抑制效果,并且可以同时衰减50Hz和60Hz的干扰,使得设备能够在不重新配置的情况下适用于不同的电网环境。设计数字滤波器时需考虑的关键参数包括:在50Hz±1Hz和60Hz±1Hz频率下的抑制效果、谐波抑制能力、滤波器建立时间以及滤波器的复杂度(这会影响功耗等其他因素)。例如,60dB的抑制效果足以将1mV的干扰电压衰减至1μV水平。 #### 四、Σ-Δ型ADC的特点及应用 Σ-Δ型ADC内置有数字滤波器,这是其架构中的关键组成部分之一。当正确配置后,该滤波器能够有效抑制电力线路频率的干扰,同时保持足够的带宽以测量输入信号。ADI公司的AD7708/AD7718、AD7709、AD7719、AD7782/AD7783等型号的ADC均采用了sinc3滤波器。 ##### 1. sinc3滤波器 - **滤波器响应**:sinc3滤波器的响应特性由滤波器的采样速率fS(通常是32.768kHz)和寄存器值SF决定。 - **滤波器特性**:sinc3滤波器具有较短的建立时间,使其在追求高速转换的同时也能保持低噪声性能。 - **滤波器配置**:sinc3滤波器响应仅能在斩波关闭模式下(ADMODE[7]=1)获得,如在AD7708/AD7718中。在该模式下,通道变化后的建立时间是转换间隔的三倍,以确保sinc3滤波器完全建立起来。 #### 五、结论 通过对Σ-Δ型ADC中的sinc3滤波器进行合理的配置,可以有效地抑制50Hz和60Hz的电力线路干扰。相较于传统的模拟滤波器,数字滤波器具有更高的灵活性和稳定性,能够更好地满足现代工业环境中对于高精度数据采集的需求。此外,通过选择合适的滤波器参数,可以在保持信号质量的同时降低系统成本并提高整体性能。
2024-08-17 16:48:18 382KB ADC 干扰抑制
1
电磁干扰对开关电源的效率和安全性影响成为人们关注的热点。文中分析了开关电源中电磁干扰产生的原因, 提出了抑制干扰的有效措施。
2024-02-26 21:11:34 109KB 开关电源 电磁干扰 电磁兼容
1
欺骗干扰是一种威胁卫星导航安全的重要因素,目前抗欺骗技术研究主要集中在检测阶段,欺骗干扰是一种威胁卫星导航安全的重要因素,目前抗欺骗技术研究主要集中在检测阶段,识别欺骗干扰后将其排除在定位解算之外,对欺骗干扰的抑制方法研究较少。本文研究了基于重构对消的欺骗干扰抑制算法,分析了算法的干扰对消比性能。仿真结果表明该算法对欺骗干扰具有良好的抑制效果,能够保障接收机在干扰条件下实现有效定位。识别欺骗干扰后将其排除在定位解算之外,对欺骗干扰的抑制方法研究较少。本文研究了基于重构对消的欺骗干扰抑制算法,分析了算法的干扰对消比性能。仿真结果表明该算法对欺骗干扰具有良好的抑制效果,能够保障接收机在干扰条件下实现有效定位。
2024-01-14 23:11:58 496KB gps
1
在本文中,我们研究了多输入多输出(MIMO)和正交频分复用(OFDM)系统中的信道频率响应(CFR)矩阵和干扰加噪声协方差矩阵(ICM)估计,以抑制同信道干扰在接收方。 我们采用最小二乘准则执行初始CFR估计。 然后,我们在时域中估计干扰加噪声的自相关函数,而不是直接在频域中估计ICM。 自相关函数估计包括两个步骤。 首先,我们给出了残差样本自相关函数(SAFR)的期望与真实自相关函数之间的内在关系,该函数实际上是线性变换。 基于此,我们提出了一种补偿方法。 当导频OFDM符号数量小时,这种补偿将带来显着的性能提升。 其次,由于不能保证补偿后的SAFR是自相关序列(ACS),这会使获得的ICM损失具有正半确定性质,因此我们利用半定值编程(SDP)来找到最接近补偿后SAFR的ACS。 SDP以其双重形式解决,从而大大降低了复杂性。 最后,估算的ICM被重新利用以修改CFR估算。 估计的CFR和ICM在应用于干扰抑制合并接收机中时,表现出出色的干扰抑制性能。
2023-02-27 15:43:04 272KB MIMO-OFDM; channel estimation; co-channel
1
在多输入多输出-正交频分复用(MIMO-OFDM)系统中,通过联合估计信道矩阵和干扰协方差矩阵(ICM)的方法来抑制同信道干扰.首先,利用最小二乘法和残差估计方法获取信道矩阵和ICM的初始估计值;然后,基于Cholesky分解方法对ICM的估计值进行改善,并利用改善后的ICM估计值对信道矩阵估计值进行更新.该方法充分利用了时域和频域中的所有可用信息,提高了信道估计精度,较好地抑制了同信道干扰.仿真结果表明:与其他可实现的非迭代方法相比,该方法所得的信道频率响应估计均方误差性能增益高于2 d B;信干噪比(SINR)越大,比特误码率性能的改善程度越好,并且随着天线数的增多,性能增益也增大.
1
用于多小区多用户MIMO系统的干扰抑制方法
2023-02-26 19:13:55 352KB 研究论文
1
斜投影极化滤波是高频地波雷达(high-frequency surface wave radar,HFSWR)抑制干扰的有效方法。分析了干扰估计误差对斜投影极化滤波器性能的影响,指出多普勒处理后的电离层杂波较处理之前具有更高的干噪比,在距离-多普勒域处理可获得更佳的估计精度和干扰抑制效果。提出一种基于距离-多普勒域的电离层杂波极化抑制方法,并使用实测数据对其处理效果进行验证。对某HFSWR实验系统实际录取的数据处理结果表明,电离层杂波干扰得到有效抑制,信干比改善可达15dB以上。
1
在对窄带干扰(NBI)进行时频特性分析的基础上,提出了一种利用小波变换进行NBI抑制的方法。该方法首先把回波数据的频谱变换到多分辨的小波域中;然后在小波域中采用恒虚警概率方法对小波系数进行干扰识别和干扰抑制;接着把干扰抑制后的数据变换到原始回波数据域,利用常规的SAR成像算法进行成像处理;最后得到清晰的SAR图像。与其他窄带干扰抑制算法相比,该算法在干扰抑制过程中对有用信号造成的损失较小,并且可以有效地抑制时变的NBI。结合仿真和实测数据的处理,经过实验分析,验证了该方法的有效性。
2022-11-29 20:04:59 3.13MB 自然科学 论文
1
pyadrc 适用于Python的主动干扰抑制控件 一种简单但功能强大的控制方法,适用于PID控制器无法切割的情况。 免费软件:MIT许可证 文档: : 。 产品特点 用于数字控制系统的离散线性时不变主动干扰抑制控制器。 一阶和二阶ADRC以状态空间表示形式实现。 快速入门指南和/或理论背景(适用于您没有其他要阅读的内容)。 一阶/二阶LTI模型生成器和四轴飞行器高度模型,用于实验,测试和验证。 安装 安装pyadrc非常简单,只需在终端中运行以下命令: pip install pyadrc 或者您可以克隆存储库并手动安装它: git clone git://github.com/onguntoglu/pyadrc cd pyadrc python setup.py install
2022-09-13 20:38:07 24KB Python
1
运动小平台近场干扰抑制技术研究_尹天宫 % % 最小二乘矩阵滤波器设计与性能分析_徐驰 % % 基于远近场声传播特性的拖线阵声纳平台辐射噪声空域矩阵滤波技术_韩东
2022-06-01 18:10:31 5KB 矩阵滤波器 近场干扰抑制
1