开关电源的电磁干扰(EMI)控制技术是电子工程师必须掌握的关键技能之一。电磁干扰可造成电子设备性能下降,严重时可导致设备无法正常工作。本文将从开关电源EMI的产生机理入手,探讨一系列抑制EMI的策略,以提高电源的电磁兼容性(EMC)。
开关电源的工作原理是将工频交流电整流为直流电,然后逆变为高频交流电,通过变压器隔离并调整电压,最终整流滤波输出稳定的直流电压。功率半导体器件,如三极管、二极管,是开关电源中的核心部件,它们在微秒量级内完成开闭动作。在这过程中,电流变化剧烈,产生射频能量,成为干扰源。高频变压器的漏感和输出二极管的反向恢复电流也会产生干扰。由于开关电源工作频率高,其分布电容不能忽略,这些分布电容在高频时会通过散热片等路径形成共模干扰。
EMI由三个基本要素组成:干扰源、耦合途径和敏感设备。为了控制EMI,必须从这三个方面入手,主要措施包括抑制干扰源、切断耦合途径以及提高敏感设备对干扰的抵抗能力。开关电源的EMI控制技术主要包括滤波技术、屏蔽技术、密封技术和接地技术。
EMI干扰可分为传导干扰和辐射干扰。传导干扰主要通过电源线或信号线传播,其频率范围宽,可达10kHz至30MHz。抑制传导干扰的方法根据不同的频段采取不同的策略。在10kHz至150kHz范围,通常使用LC滤波器解决常态干扰问题;在150kHz至10MHz范围,主要采用共模抑制滤波器来减少共模干扰;而对于高于10MHz的频段,则需要改进滤波器的结构和增加电磁屏蔽。
交流输入EMI滤波器是一种常用的抑制技术,用于抑制电源线上的共模干扰和差模干扰。滤波器中的差模电容用于短路差模干扰电流,而接地电容则用于短路共模干扰电流。共模扼流圈通过磁耦合抵消差模干扰电流,并对共模干扰电流呈现较大电感,从而衰减共模干扰信号。
此外,改善开关电源中功率器件的开关波形也是减少EMI的有效手段。例如,RCD浪涌电压吸收回路能有效减小开关管或二极管在开通和关断过程中的浪涌电压,降低因变压器漏感和线路电感引起的EMI。
在实际应用中,开关电源EMI控制技术的选择需根据电源的具体工作环境和电磁兼容性要求来确定。通过采用一系列的EMI控制策略,可以在确保开关电源性能的同时,减少对周围电磁环境的影响,从而提高整个系统的稳定性和可靠性。
1