为了实现更加稳健和精准的门诊量预测,构建了一种基于SARIMA-LSTM的门诊量预测模型。该方法首先使用SARIMA模型对门诊量进行单指标建模,提取门诊量指标蕴含的周期、趋势等信息,然后构建了以节日天数、法定上班天数、平均最高气温等多个相关指标为输入的多对一LSTM模型,对SARIMA模型残差进行进一步学习,实现残差与多个变量间的非线性关系抽取。实证结果表明,构建SARIMA-LSTM混合模型相较5种主流预测方法具有更高的一步预测精度,具有较好的实际应用价值。
1
针对现阶段城市道路交通流预测精度不高的局限性,提出了一种基于差分自回归滑动平均( ARIMA) 和小波神经.网络( WNN) 组合模型的预测方法来进行交通流预测。利用差分自回归滑动平均模型良好的线性拟合能力和小波神经网.络模型强大的非线性关系映射能力,把交通流时间序列的数据结构分解为线性自相关结构和非线性结构两部分。采用差.分自回归滑动平均模型预测交通流序列的线性部分,用小波神经网络模型预测其非线性残差部分,最终合成为整个交通.流序列的预测结果。计算机仿真结果表明: 组合模型的预测精度高于ARIMA 模型和WNN 模型各自单独使用时的预测精.度,组合模型可以提高交通流预测精度,是交通流预测的有效方法。
1