动态贝叶斯网络(DBN)广泛应用于各种生物网络的建模,包括基因调控网络。 由于学习静态贝叶斯网络的几个 NP-hardness 结果,大多数学习 DBN 的方法都是启发式的,使用局部搜索(如贪心爬山)或元优化框架(如遗传算法或模拟退火)。
我们提出了 GlobalMIT,这是一个工具箱,用于使用最近引入的基于信息理论的评分指标互信息测试 (MIT) 来学习全局最优 DBN 结构。 在 MIT 下,可以在多项式时间内高效地实现全局最优 DBN 的学习。 该工具箱是在 Matlab 中实现的,还有搜索引擎的 C++ 独立实现以提高性能。
该项目由澳大利亚维多利亚州莫纳什大学 Gippsland 信息技术学院的生物信息学和系统生物学小组进行。
该项目由 Vinh Nguyen 管理。 最新版本的工具箱可在以下网址找到: http : //code.google.com/p/globalm
2022-04-08 18:34:01
1.53MB
matlab
1