采用周期性慢波结构加载的开路传输线代替传统的四分之一波长阻抗变换器,设计一种小型化且适用于高频的Wilkinson功分器,有效改善了传统Wilkinson功分器尺寸大且高频时容易出现色散的问题。最后基于FR4基板,设计应用于900 MHz的Wilkinson功分器,测量结果显示,三个端口匹配良好,S11约为-20.58 dB,S22约为-23.62 dB,S21约为-3.28 dB,输出端口的隔离度约为-33.3 dB,仿真结果和测量结果趋势吻合,验证了该方法的可行性。
2025-03-29 11:57:03 409KB 威尔金森
1
连续波雷达信号处理,尤其是针对频率调制连续波(FMCW)合成孔径雷达(SAR)的技术,是一个高度专业化的领域,涉及雷达信号处理的多个方面。FMCW技术与SAR技术的结合,导致了高分辨率的轻量级、低成本成像传感器的出现。这些系统在航空地球观测领域具有重要的应用价值,尤其是在需要频繁访问、低成本或小型化设备的情况下。 FMCW雷达技术具备一些独特的优势,比如持续的低发射功率,这意味着相对于脉冲雷达系统来说,FMCW雷达更加经济且体积更小。然而,FMCW传感器的使用受到发射信号中非线性现象的限制,这会降低对比度和距离分辨率,特别是在需要高分辨率长距离应用的情况下。 为了解决这一问题,本资料提出了一个新颖的信号处理解决方案,它可以解决整个距离剖面的非线性问题。该方案摒弃了在脉冲雷达算法中通常使用的“停止-走”近似法,在某些情况下,这种近似法在FMCW SAR应用中是无效的,因此必须考虑扫频过程中的运动。论文中提出了不使用“停止-走”近似的FMCW SAR信号模型的解析发展,并将所提出的方法应用于条带映射、聚光和数字波束成形SAR操作模式。这些算法通过处理在代尔夫特科技大学建造的演示系统上收集的真实FMCW SAR数据进行了验证。 在这篇文章中,作者Adriano Meta、Peter Hoogeboom和Leo P. Ligthart对于FMCW SAR系统中的非线性问题提供了一种新的解决方案,并且展示了如何不依赖于传统“停止-走”近似来对FMCW SAR信号进行精确建模。这对于SAR技术的发展具有重要意义,因为它允许更为准确地处理通过SAR系统获得的数据,并最终生成更为清晰、分辨率更高的图像。 FMCW SAR系统的另一个关键特点是在条带映射、聚光模式以及数字波束成形技术中的应用。条带映射模式下,雷达沿着飞行方向平行于地面进行扫描;聚光模式则是雷达波束指向特定区域以获得更高分辨率的图像;数字波束成形则是利用数字信号处理技术来控制波束的方向性,从而提高SAR系统的性能。这些技术在提高成像质量、增强探测能力等方面有着不可替代的作用。 论文中提到的多发射机/多接收机架构,能够利用多个接收机来收集信号,从而提升数据收集效率和成像质量。这对于飞行器搭载的SAR系统来说尤其重要,因为它能够确保在移动中实现连续稳定的信号接收和成像。 除了上述的技术细节,论文还介绍了一些关键词,如多普勒频率调制连续波(FMCW)、非线性校正、合成孔径雷达(SAR)校正和频率校正等。这些关键词不仅体现了FMCW SAR信号处理的核心概念,还揭示了该领域研究的复杂性和前沿性。 连续波雷达信号处理,特别是针对FMCW SAR的研究,不仅在技术上具有创新性和实用性,而且在航空地球观测、环境监测、军事侦察等多个领域都有着广泛的应用前景。随着技术的不断进步,我们可以预见,该领域将会出现更多突破性的进展。
2025-03-26 17:08:07 1.71MB FMCW 信号处理 合成孔径雷达
1
小波分析是一种时频分析方法,它的核心思想是通过一系列不同尺度的小波基函数来分析信号,这种方法在处理非平稳信号方面具有独特的优势。非平稳信号指的是那些在时域内频率特性发生变化的信号,例如在电机故障诊断中经常遇到的突变信号和噪声。传统傅里叶变换在分析这类信号时存在局限,因为它只能提供信号的频率分布,而不能在时间域上对信号进行局部化分析。 小波变换能够弥补这一不足,它可以在时域和频域上同时实现对信号的局部化处理。它允许信号的多尺度分解,通过选择合适的小波基函数和尺度因子,能够在不同的时间尺度上对信号进行细致分析。这种特性使得小波分析非常适合于电机故障诊断中信号奇异性(即信号变化的突变点)的检测。小波分析能够有效地定位和检测出信号中的突变点,这对于故障诊断来说至关重要,因为故障往往伴随着信号的突变。 在电机故障诊断领域,常见的故障类型包括定子故障、转子故障和轴承故障等。其中,定子故障由于绝缘损坏而导致的匝间短路故障较为常见。小波分析能够在电机振动信号中检测到这些故障引起的突变信号,通过对采集到的信号进行小波包分解,然后利用分解后的小波系数重构信号,并计算各频段的能量特征值,提取出故障特征。这有助于精确地诊断出故障发生的时间以及故障类型。 小波变换在信号奇异性的检测中通常以卷积的形式来定义。通过选取适当的光滑函数,可以构建小波变换模型。常见的光滑函数包括高斯函数或基数B样条函数。小波变换能够分析信号的奇异性,即信号的局部变化特征。它可以识别出信号中的突变点,这些点对应于信号快速变化的部分。小波变换的模极大值通常对应于信号的快速变化部分,而模极小值对应于信号的缓慢变化部分。 然而,在实际应用中,小波变换对时间定位的准确性依赖于光滑函数尺度的选择。尺度越小,对信号的时间定位越精确,但同时噪声的影响也越大。在小尺度下,小波系数容易受到噪声的干扰,导致伪极值点的产生。相反,在大尺度下,虽然噪声得到了一定的平滑,但同时也会导致对突变点定位的偏差。因此,在利用小波变换来确定信号突变点时,需要在不同的尺度下综合分析,以避免交迭干扰,并得到准确的定位结果。 小波分析的这些特点使其在电机故障诊断中显示出极大的应用价值。通过对信号的细致分析,能够及时发现电机中的早期故障,有效突破了传统信号处理方法的局限,为电机故障的早期预防和维护提供了有力支持。同时,小波分析在其他领域的应用也日益广泛,如图像处理、生物医学信号分析等,它已成为现代信号处理不可或缺的工具之一。
2025-03-24 16:54:06 314KB 小波分析
1
该论文提出了一种运用小波分析来诊断电机故障的方法
2025-03-24 16:51:05 187KB 小波分析 电机故障诊断
1
现代密码学-杨波-清华大学出版社-课后答案
2025-02-24 14:40:21 1.61MB 现代密码学
1
【图像去噪】基于matlab改进的小波阈值图像去噪(含PSNR)【含Matlab源码 2577期】
2025-02-08 14:49:20 10KB
1
存在一类超轻暗物质(DM)模型,该模型可以在早期宇宙中产生玻色-爱因斯坦凝聚物(BEC),并表现为单个相干波,而不是星系中的单个粒子。 我们表明,沿着重力波(GW)信号的视线插入的通用BEC-DM光晕可能会引起GWs速度的可观察到的变化,而有效折射率仅取决于质量和质量的自相互作用。 组成DM粒子和GW频率。 因此,我们建议使用GWs速度的偏差作为BEC-DM参数空间的新探查。 借助多信使天文学天文学的方法和/或扩展了对更低GW频率的敏感性,我们的新方法将在不久的将来有效地探究整个BEC-DM参数空间。
2025-01-13 11:41:47 414KB Open Access
1
直流斩波电路的性能研究(六种典型线路)
2024-12-19 22:25:54 447KB 直流斩波电路
1
"单片机控制的直流斩波器设计" 单片机控制的直流斩波器设计是指使用微处理器作为控制核心,对开关电源进行可编程控制的设计。这种设计方式能够克服传统开关电源的不足之处,提高控制精度和响应速度。 传统开关电源的控制方式是基于硬件的控制模式,其控制精度和响应速度都由电路拓扑结构和器件参数决定。这种控制方式存在一些不足之处,如控制精度不高、响应速度慢、灵活性差等。随着微处理器技术的发展,软件和硬件结合的控制技术得到了广泛的关注。这种技术能够克服传统开关电源的不足之处,提高控制精度和响应速度。 单片机控制的直流斩波器设计的优点在于: 1. 可编程控制:使用微处理器作为控制核心,可以实现可编程控制,提高控制精度和响应速度。 2. 软件和硬件结合:软件和硬件结合的控制技术能够克服传统开关电源的不足之处,提高控制精度和响应速度。 3. 灵活性强:使用微处理器作为控制核心,能够实现灵活的控制,满足不同应用场景的需求。 4. 高度可靠性:单片机控制的直流斩波器设计能够提供高度可靠性的控制,满足高可靠性应用场景的需求。 单片机控制的直流斩波器设计的应用场景广泛,包括: 1. 电源供应:单片机控制的直流斩波器设计可以应用于电源供应系统,提供高效、可靠的电源供应。 2. 工业控制:单片机控制的直流斩波器设计可以应用于工业控制系统,提供高效、可靠的控制。 3. 医疗设备:单片机控制的直流斩波器设计可以应用于医疗设备,提供高效、可靠的医疗服务。 4. 航空航天:单片机控制的直流斩波器设计可以应用于航空航天领域,提供高效、可靠的控制。 本文将对单片机控制的直流斩波器设计进行详细说明,包括硬件设计、软件设计和实现过程。 硬件设计: 单片机控制的直流斩波器设计的硬件设计主要包括以下几个部分: 1. 微处理器:微处理器是单片机控制的直流斩波器设计的核心部分,负责控制整个系统。 2. 电源模块:电源模块负责提供稳定的电源供应,满足系统的需求。 3. 斩波器模块:斩波器模块负责将直流电转换为交流电,满足系统的需求。 4. 传感器模块:传感器模块负责监控系统的状态,提供实时的监控信息。 软件设计: 单片机控制的直流斩波器设计的软件设计主要包括以下几个部分: 1. 控制算法:控制算法负责控制整个系统的运行,实现可靠的控制。 2. 传感器数据处理:传感器数据处理负责处理传感器模块提供的数据,提供实时的监控信息。 3. 系统状态监控:系统状态监控负责监控系统的状态,提供实时的监控信息。 实现过程: 单片机控制的直流斩波器设计的实现过程主要包括以下几个步骤: 1. 需求分析:需求分析负责分析系统的需求,确定系统的要求。 2. 硬件设计:硬件设计负责设计系统的硬件结构,包括微处理器、电源模块、斩波器模块和传感器模块等。 3. 软件设计:软件设计负责设计系统的软件结构,包括控制算法、传感器数据处理和系统状态监控等。 4. 测试和验证:测试和验证负责测试和验证系统的性能,确保系统的可靠性。 单片机控制的直流斩波器设计是指使用微处理器作为控制核心,对开关电源进行可编程控制的设计。这种设计方式能够克服传统开关电源的不足之处,提高控制精度和响应速度。
2024-12-15 15:11:02 889KB
1
应用随机过程 (张波 著) 课后习题答案 清华大学出版社
2024-12-03 16:26:47 2.2MB
1