计算机体系结构是理解计算机系统运作基础的关键概念,它定义了程序员所看到的计算机属性,包括概念结构和功能特性。冯诺依曼结构是现代计算机的基础,它规定了存储式计算机的特点,即数据和指令存储在同一内存中,通过中央处理器执行指令来完成计算任务。计算机体系结构的设计不仅仅是硬件层面的,还包括了软件兼容性和指令系统的设计。
计算机体系结构设计的三个方面包括:概念设计、逻辑设计和物理设计。概念设计关注的是用户接口和总体系统行为;逻辑设计则涉及硬件和软件之间的接口,即软硬件界面;物理设计则深入到具体元件和电路层面。
冯诺依曼结构的计算机中,指令操作是有序的,按照程序计数器PC指示的顺序执行。计算机系统结构、组成和实现是密切相关的,其中计算机组成是体系结构的逻辑实现,而实现则是组成的物理实现。这意味着相同的体系结构可以有不同的组成方式,而不同的组成方式又可以有不同的实现方式。
随着软件技术的发展,存储器容量的需求逐年增长,这对体系结构提出了新的挑战。并行处理是解决这一问题的有效手段,它可以分为指令内部并行、指令间并行、线程级并行、任务级或过程级并行以及作业或程序级并行。并行性的实现可以通过时间重叠、资源重叠和资源共享来提高系统性能。
Amdahl定律指出,系统性能的提升受限于可改进部分的比例和加速比,而优化策略应遵循大概率事件优先原则,优先优化最常执行的部分以获取最大效益。此外,程序局部性原理(时间局部性和空间局部性)是指导存储器设计的重要理论,它表明程序访问的地址往往呈现一定的聚集性。
指令系统是计算机体系结构的核心组成部分,寻址方式是其中的关键。寻址技术涉及从形式地址到实际地址的转换,包括直接寻址、间接寻址等多种方式。指令集的优化和设计考虑因素包括操作数的存储、操作数个数、寻址方式、操作类型以及操作数的类型和大小。
RISC(精简指令集计算机)和CISC(复杂指令集计算机)是两种主要的指令集架构。RISC追求简洁高效,而CISC则倾向于在硬件中实现更多复杂功能。现代指令系统通常会结合两者优点,根据目标程序、高级语言和编译程序、操作系统的优化需求进行设计。例如,增加对高级语言的支持,优化中断处理和进程管理,以及利用流水技术和多级缓存来提高性能。
在数据表示方面,整数、浮点数、字符和字符串通常采用二进制补码表示,浮点数遵循IEEE 754标准。这些基本的数据类型和表示方法构成了计算机处理信息的基础。
总结来说,计算机体系结构思维导图涵盖了从计算机的基本工作原理到高级的系统优化设计,是学习和复习计算机科学的重要工具,有助于理解和掌握计算机系统的核心概念。
1