YOLOv11 C++ TensorRT 项目是一个用C++实现并使用NVIDIA TensorRT进行优化的高性能对象检测解决方案。该项目利用 YOLOv11 模型提供快速准确的对象检测,并利用 TensorRT 最大限度地提高推理效率和性能。 主要特点: 模型转换:将 ONNX 模型转换为 TensorRT 引擎文件以加速推理。 视频推理:有效地对视频文件进行对象检测。 图像推理:对单个图像执行对象检测。 高效率:针对使用 NVIDIA GPU 的实时物体检测进行了优化。 使用 CUDA 进行预处理:支持 CUDA 的预处理,可实现更快的输入处理。 先决条件 CMake(版本 3.18 或更高版本) TensorRT(V8.6.1.6:用于使用 YOLOv11 进行优化推理。) CUDA 工具包(V11.7:用于 GPU 加速) OpenCV(V4.10.0:用于图像和视频处理) NVIDIA GPU(计算能力 7.5 或更高)
2024-12-03 15:04:21 12.3MB TensorRT 目标检测
1
halcon 深度学习 对象检测 图像+代码
2024-09-27 22:32:16 103.8MB 深度学习
1
QT+OpenCV4.5.5+YOLOv5+海康摄像机对象检测是一个集成性的项目,旨在利用这些技术实现在海康网络摄像机视频流中的物体检测。QT是一个跨平台的C++应用程序开发框架,它提供了丰富的图形用户界面(GUI)工具,而OpenCV则是一个强大的计算机视觉库,具有众多图像处理和机器学习功能。在这个项目中,OpenCV的dnn模块被用来运行预先训练好的YOLOv5模型,YOLOv5是一种高效且准确的目标检测算法。 QT作为前端展示的工具,开发者可以利用其强大的GUI设计能力,创建一个实时视频预览窗口,显示海康网络摄像机的视频流。QT的QCamera和QVideoWidget组件可以方便地实现这一功能,通过设置合适的源设备和显示窗口,实时显示来自海康摄像机的视频流。 接下来,OpenCV的dnn模块是连接到后端深度学习模型的关键。OpenCV 4.5.5版本支持多种深度学习框架,如TensorFlow、Caffe和ONNX,因此能够加载并执行YOLOv5的模型。YOLOv5以其快速的推理速度和高精度在目标检测领域受到广泛欢迎。开发者需要将YOLOv5的权重文件转换成OpenCV可以读取的格式,然后使用dnn::readNetFromONNX或dnn::readNetFromDarknet函数加载模型。在每帧视频上,dnn模块会进行前向传播,识别出图像中的物体并返回边界框和类别信息。 在视频流处理过程中,开发者需要实时对每一帧进行处理,这涉及到帧的捕获、预处理(如调整尺寸以适应模型输入)、模型预测以及后处理(例如非极大值抑制NMS来去除重复的检测结果)。同时,为了保证性能,可能还需要进行多线程优化,利用QT的并发框架QThread或QThreadPool来分离UI线程和计算线程,避免因计算密集型任务导致的UI卡顿。 至于海康摄像机,它提供了SDK供开发者使用,以便于获取网络摄像机的视频流。通过SDK提供的API,开发者可以实现与摄像机的连接、视频流的订阅和解码等操作。海康摄像机通常支持ONVIF协议,这使得它能够与其他遵循该协议的设备和软件无缝集成。 在实际应用中,可能会遇到各种挑战,如网络延迟、模型性能优化、UI交互设计等。对于网络延迟,可以通过优化网络连接和数据传输方式来缓解;对于模型性能,可以考虑模型轻量化或调整模型参数;对于UI交互,需要确保界面清晰易用,提供必要的控制选项,如帧率调整、检测阈值设置等。 这个项目融合了QT的GUI设计、OpenCV的计算机视觉能力、YOLOv5的深度学习目标检测以及海康摄像机的视频流处理,为实时视频对象检测提供了一个全面的解决方案。通过深入理解并熟练掌握这些技术,开发者可以构建出高效、稳定且用户体验良好的系统。
2024-09-19 16:52:02 80.63MB
1
聚合视图对象检测 此存储库包含用于3D对象检测的聚合视图对象检测(AVOD)网络的Python实现的公共版本。 ( ,( ,,( ,( 如果您使用此代码,请引用我们的论文: @article{ku2018joint, title={Joint 3D Proposal Generation and Object Detection from View Aggregation}, author={Ku, Jason and Mozifian, Melissa and Lee, Jungwook and Harakeh, Ali and Waslander, Steven}
2024-05-05 15:54:37 24.01MB deep-learning object-detection
1
QuobileNet 正在进行中的基于MobileNetV2的混合量子经典对象检测器。 当前,它修改了一个简单的自制CNN模型,该模型的经典版本使用数据集中的和9在3类分类问题上达到了99.60%的准确性。 我们用一个量子当量替换了4个卷积层之一:“量子卷积”层。 有关如何运行的更多信息和说明,请参见下文。 介绍 该项目旨在创建流行的物体检测网络的混合模型。 的主要重点是与 (以及可能 )的特征提取主链。 目标是引入量子层并测量各种性能统计数据,例如平均平均精度(mAP)和达到可比的损耗值所需的历元数。 重点关注的主要层是卷积层。 通过对人中引入的原始量子层模型进行修改 和在PennyLane上找到的,构建了一个定制的量子卷积层,该层将任何内核大小和输出层深度作为参数,自动确定所需的正确量子位数,并使用量子输出适当的特征图电路为基础。 当前的计划是用定制的量子卷积层代替Retina
2024-03-07 13:43:54 1.11MB Python
1
对象检测DETR
2023-09-23 09:29:37 520KB JupyterNotebook
1
分享课程——YOLOv8自定义对象检测、实例分割、目标跟踪从训练到部署,2023新课,提供源码+课件+数据。 详解YOLOv8模型结构从backbone、neck、header、loss层面详解YOLOv8相比YOLOX、YOLOv5、YOLOv6的全面改进与创新。完成YOLOv8自定义数据的对象检测,实例分割、自定义对象跟踪,YOLOv8在主流推理平台上部署包括 OpenVINO、ONNXRUNTIME、TensorRT推理代码详解与演示。打通从模型结构理论到工程实践训练部署整个流程。彻底玩转YOLOv8。
2023-09-12 14:09:47 811B 目标跟踪 yolo 深度学习
1
该数据集包含动态和变化背景下的风力涡轮机图像。我设计这个数据集时考虑到了无人机摄影师。商业市场上的许多无人机都预装了软件开发工具包或sdk(如大疆无人机),允许用户用Python等语言对无人机进行编程。因此,具有高质量摄像头的商用无人机可以与其SDK配对,以创建令人难以置信的计算机视觉项目!这些项目是无限的,所以我将继续为这个数据集做出贡献。请继续关注! 格式: YOLO v7 PyTorch 特点: 水平翻转的概率是50% 0到3像素之间的随机高斯模糊 随机曝光调整介于- 25%和+ 25%之间 预分割:87%训练,9%验证,4%测试(2885张图像) 类似的数据集: 皮肤癌二元分类数据集 标签: Roboflow -免费的图像标签 该数据集包含动态和变化背景下的风力涡轮机图像。我设计这个数据集时考虑到了无人机摄影师。商业市场上的许多无人机都预装了软件开发工具包或sdk(如大疆无人机),允许用户用Python等语言对无人机进行编程。因此,具有高质量摄像头的商用无人机可以与其SDK配对,以创建令人难以置信的计算机视觉项目!这些项目是无限的,所以我将继续为这个数据集做出贡献。请继续关
2023-06-07 20:14:01 359.98MB pytorch pytorch 数据集
1
Unity_Detection2AR 一种将对象定位合并到常规计算机视觉对象检测算法中的简单解决方案。 想法:没有太多的开源实时3D对象检测。 这是一个使用“更流行”的2D对象检测,然后使用几个特征点对其进行本地化的示例。 它使用最近发布的进行对象检测,并使用ARFoundation进行AR。 它可以在iOS和Android设备上使用。 目前支持微小的Yolo2和3。 要求 "com.unity.barracuda": "1.0.3", "com.unity.xr.arfoundation": "4.0.8", "com.unity.xr.arkit": "4.0.8", "com.unity.xr.arcore": "4.0.8" 用法 它是在Unity 2020.2.1中开发的,需要具有更新的AR包的产品就绪的梭子鱼。 梭子鱼的预览版似乎不稳定,可能无法正常工作。 在Unity
2023-03-29 10:11:30 79.06MB unity augmented-reality unity3d object-detection
1
通过卫星影像进行船只检测 这是来自Kaggle的“的的船舶检测管道。 它使用滑动Windows +非最大压缩来进行对象检测,并使用HoG + SVM方法进行分类。 剧本 分类器 HoG + SVM分类器是使用数据集压缩文件中包含的信息以及以pickle格式存储的信息进行训练的。 python ship_clf.py 滑动窗物体检测 船舶检测器将一个窗口滑过图像金字塔,并将每个窗口分类为船舶还是非船舶,并返回一组边界框,这些边界框随后使用非最大压缩方案进行过滤。 python ship_detector.py
2023-02-23 15:49:31 79.39MB Python
1