5.5 赋值运算符 赋值运算定义如下: = 赋值运算符。 ++ 递增,例如 x++相当于 x = x+1;当用于数组下标时,在自加运算前先求变量值。 -- 递减,例如 x--相当于 x = x − 1;当用于数组下标时,在自减运算前先求变量值。 += 自加指定值,例如 x += 3相当于 x = x + 3,x += (−3)相当于 x = x + (−3)。 −= 自减指定值,例如 x −= 3相当于 x = x − 3,x −= (−3)相当于 x = x − (−3)。 5.6 取值范围记号 取值范围记号定义如下: x = y..z x取从 y至 z(含 z)的值,其中 x、y 和 z 是整数。 5.7 数学函数 数学函数定义如下 ; 0 Abs( x ) ; 0 x x x x >=⎧ = ⎨ − <⎩ (5-1) Ceil( x ) 取不小于 x 的最小整数。 (5-2) Clip1Y( x ) = Clip3( 0, ( 1 << BitDepthY ) − 1 , x ) (5-3) Clip1C( x ) = Clip3( 0, ( 1 << BitDepthC ) − 1 , x ) (5-4) Clip3( x, y, z ) = ⎪ ⎩ ⎪ ⎨ ⎧ > < 其其其其; ; ; z yzy xzx (5-5) Floor( x ) 取不大于 x 的最大整数。 (5-6) InverseRasterScan( a, b, c, d, e ) = ⎩ ⎨ ⎧ == == 1;*))//(( 0;*))/%(( ecbda ebbda (5-7) Log2( x ) 取以 2 为底的 x 的对数。 (5-8)
2022-09-29 09:16:20 4.36MB H264标准
1
新一代半导体材料GaN相比于Si、GaAs等材料,具有禁带宽、击穿场强高、热稳定性优异等特性,在宽带功放的设计中被广泛使用。基于CREE公司的两款GaN功率芯片进行级联,匹配电路为集中元件和分布元件混合,采用负反馈技术提高带宽,RC并联网络提高稳定性,设计了一款20 MHz~520 MHz的宽带功放。利用ADS软件对芯片模型和匹配电路进行优化仿真和实际调试,在20 MHz~520 MHz频段内,功放模块饱和输出功率大于9 W,增益大于29.5 dB,漏极效率高于40%,带内平坦度为±0.7 dB。
2022-09-20 16:31:44 57KB GaN
1
针对LDMOS宽带功率放大器匹配电路设计, 提出了一种快速、有效的方法。采用多节并联导纳匹配法得出宽带匹配电路的初始值后, 利用ADS软件对匹配网络的S参数进行优化。
2021-10-30 17:03:36 720KB LDMOS 宽带功率放大器 匹配电路 文章
1
本文将概述不同数字预失真技术,介绍一种创新性DPD线性化电路特有的自适应算法。
2021-10-24 19:39:58 109KB 功率放大器 宽带 失真 数字
1
500w射频宽带功率放大器方案设计,频率从20MHz到100MHz,采用功率合成技术。
2021-10-02 15:38:36 260KB 看看
1
实现了一款GaN超倍频功率放大器。基于CREE公司型号为CGHV60040D裸芯片,通过对芯片外围键合线和微带线进行建模及电磁场仿真,利用最佳负载阻抗匹配的原理,并借助仿真软件设计优化了宽带匹配网络,最终完成了一款工作在2~6 GHz的单管宽带功率放大器。对所设计的宽带功放模块进行脉冲测试,在1.8~5.5 GHz的宽频带范围内,增益为10~13 dB,输出功率43 dBm以上,功率附加效率(PAE)达到40%以上。
2021-05-12 20:52:07 327KB 26GHz
1
研究了宽带Doherty功率放大器设计的相关问题.为了拓宽Doherty功率放大器的带宽,提 出了一种新型负载调制网络.采用CREE半导体公司的GaN HEMT功放管CGH40010F,应用新 型负载调制网络设计了一款宽带Doherty功率放大器并进行了实物加工测试.主功放工作在AB 类,直流偏置Vds=28V,Vgs=-2.7V;辅功放工作在C类,直流偏置Vds=28V,Vgs=-5.5V. 测试结果显示,新型宽带Doherty功率放大器实物在1.5~2.3GHz的800MHz带宽内,饱和输出 功率为42.66~44.39dBm,饱和效率在52%~66%之间,输出功率回退6dB处的效率在46%~ 50%之间,相对带宽为42.1%,且增益平坦,验证了设计方案的可行性. 关键词:Doherty功率放大器;宽带;负载调制网络
2021-04-26 15:56:13 254KB Doherty电路
1
摘要: 针对LDMOS宽带功率放大器匹配电路设计, 提出了一种快速、有效的方法。采用多节并联导纳匹配法得出宽带匹配电路的初始值后, 利用ADS软件对匹配网络的S参数进行优化。仿真结果为: 在频率范围为1. 3 GH z~ 2. 3 GH z内, 两端口的反射系数均小于- 25 dB, 匹配网路的传输系数接近0 dB。为实现更好的阻抗匹配, 再用ADS优化匹配网络, 使其阻抗值更接近功率晶体管的实际输出阻抗值。此方法对快速有效地设计宽带功率放大器匹配电路有着很好的借鉴作用。宽带功率放大器除在军用领域外, 在无线通信、移动电话、卫星通信网、定位系统、直播卫星接收、毫米波自动防撞系统、光传输系统等领
1
摘要:介绍一个两级2 W的宽带功率放大器设计,频率范围从700 MHz~1.1 GHz。前级放大器采用MMICPower Amplifier HMC481MP86,末级采用飞思卡尔公司的LDMOS场效应晶体管MW6S004N。飞思卡尔公司提供的datasheet中没有包含在设计所要求的频段和功率输出值时相应的输入和输出阻抗值。为了正确匹配,采用ADS的负载牵引法得到LD-MOS场效应晶体管MW6S004N的输入和输出阻抗值,然后使用有耗匹配式放大器的拓扑结构进行实际设计,并使用ADS对设计的放大器进行仿真和优化。 关键词:功率放大器;宽频带;有耗匹配;ADS;LDMOS
2021-04-15 10:51:44 447KB 宽带功率放大器的设计
1
前言 第1章 概述 1.1 宽带无线移动通信系统的发展 1.2 功率放大器线性化技术简介 1.2.1 国内外研究现状 1.2.2 本书的创新性工作 1.3 本书结构安排 第2章 功率放大器数学模型 2.1 功率放大器非线性效应分析 2.2 非线性效应基带等效分析 2.3 无记忆功率放大器典型模型 2.3.1 Saleh模型 2.3.2 Rapp模型 2.3.3 多项式模型 2.4 宽带功率放大器记忆效应分析 2.5 有记忆功率放大器模型 2.5.1 Volterra模型 2.5.2 多项式模型 2.5.3 Wiener模型 2.5.4 Hammerstein模型 2.5.5 并行Hammerstein模型 2.5.6 神经网络模型 2.6 本章小结 第3章 功率放大器非线性对传输信号的影响 3.1 非线性的时域及频域分析 3.1.1 谐波失真 3.1.2 互调失真 3.1.3 交调失真 3.1.4 AM/AM和AM/PM畸变 3.2 功率放大器非线性对多载波信号功率谱的影响 3.2.1 无记忆模型功率谱的解析表达 3.2.2 有记忆模型功率谱的解析表达 3.2.3 仿真及分析 3.3 功率放大器非线性对多载波信号符号率的影响 3.3.1 误符号率的解析表达 3.3.2 仿真及分析 3.4 功率放大器非线性评价指标 3.4.1 分贝压缩点功率 3.4.2 三阶互调系数 3.4.3 三阶截断点 3.4.4 交调系数 3.4.5 输入及输出回退 3.4.6 系统性能总损耗 3.5 本章小结 第4章 宽带功率放大器预失真技术简介 4.1 数字预失真技术综述 4.2 预失真技术基本原理 4.3 非自适应性预失真技术 4.3.1 方案概述 4.3.2 特性曲线的测量 4.4 射频自适应预失真技术 4.5 中频自适应预失真技术 4.6 基带自适应数字预失真技术 4.7 本章小结 第5章 宽带功率放大器预失真估计结构 5.1 直接学习结构 5.2 间接学习结构 5.2.1 基于IDLA的新算法 5.2.2 仿真及分析 5.3 本章小结 第6章 基于查询表的数字预失真 6.1 查询表预失真方法综述 6.1.1 查询表形式 6.1.2 查询表的指针方式 6.1.3 查询表地址索引方式 6.1.4 查询表自适应算法 6.1.5 查询表预失真方法的不足 6.2 无记忆查询表预失真方法 6.2.1 常规查询表预失真算法 6.2.2 改进的查询表预失真方法 6.3 有记忆查询表预失真方法 6.3.1 一维查询表预失真方法 6.3.2 二维查询表预失真方法 6.4 本章小结 第7章 基于多项式的数字预失真 7.1 多项式预失真方法综述 7.1.1 多项式模型 7.1.2 多项式自适应算法 7.1.3 多项式预失真方法的不足 7.2 多项式形式的选择 7.2.1 预失真多项式形式 7.2.2 正交多项式模型 7.3 无记忆多项式预失真方法 7.3.1 分段无记忆多项式预失真方法 7.3.2 直接学习结构递推系数估计方法 7.3.3 间接学习结构系数估计方法 7.3.4 正交多项式预失真方法 7.3.5 动态系数多项式预失真方法 7.4 有记忆多项式预失真方法 7.4.1 分段有记忆多项式预失真方法 7.4.2 归一化最小均方系数估计方法 7.4.3 广义归一化梯度下降系数估计方法 7.4.4 广义记忆多项式预失真方法 7.4.5 分数阶记忆多项式预失真方法 7.4.6 Hammerstein预失真方法 7.5 本章小结 第8章 宽带功率放大器预失真方案设计 8.1 数字预失真系统设计 8.2 反馈环路延迟估计 8.2.1 常规环路延迟估计方法 8.2.2 提出的环路延迟估计方法 8.2.3 仿真分析 8.3 PAPR降低技术与预失真 8.3.1 问题引出 8.3.2 PAPR降低技术 8.3.3 限幅对OFDM信号预失真性能的影响 8.3.4 PAPR降低技术与PA线性化的内在联系 8.4 宽带功率放大器的有效阶估计 8.5 关于硬件实现 8.5.1 非自适应预失真硬件实现 8.5.2 自适应数字预失真硬件实现 8.6 宽带功率放大器预失真新理论与技术 8.6.1 功率放大器预失真新理论 8.6.2 功率放大器预失真新技术 8.7 本章小结 参考文献 附录A 符号表 附录B 缩略语
2019-12-21 19:23:25 18.5MB 预失真
1