针对基于信号接收强度指示(Received Signal Strength Indicator, RSSI)的无线传感器网络室内定位易受到复杂环境的影响、不稳定等问题,提出一种自适应的动态测距室内定位算法(self-adaptively dynamic ranging,SADR),采用节点RSSI建立动态测距模型,实时更新模型中环境参数,利用改进的代价参考粒子滤波进行测距,运用最小二乘法计算目标位置。仿真和实验结果表明,算法适应复杂环境,提高了定位精度,满足无线传感器网室内定位需求。
1
超宽带(Ultra Wide Band,UWB)技术是一种无线载波通信技术,它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很宽。 UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,截获能力低,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入。
2023-06-13 17:14:11 8MB 室内定位,UWB
1
该代码是关于RFID室内定位的MATLAB仿真。可运行,有注释。
2023-04-15 15:39:27 12KB RFID MATLAB 室内定位
1
基于测距与指纹的室内定位算法研究
2023-04-13 19:09:16 121KB 基于 测距 指纹 室内定位
1
针对室内复杂环境下无线传感器节点的信号传播状态在LOS/NLOS之间切换的现象,提出基于TDOA和RSS的可行域粒子滤波非视距定位.首先采用基于TDOA和RSS两种测距模型的假设检验方法去辨识测量信号中是否存在NLOS现象,然后采用考虑NLOS测量信息的可行域粒子滤波方法对未知移动节点的位置进行定位.仿真结果表明,所提出的方法优于最小二乘法、普通的粒子滤波算法以及仅采用RSS测距模型的粒子滤波算法,具有较高的定位精度.
1
基于接收信号强度的KNN室内定位算法,还有测试数据。适合初学者参考
2023-03-15 21:08:15 12KB knn定位 knn,定位算法 knn 定位
第4章行人步频探测和步长估计 第4章行人步频探测和步长估计 在行人航迹推算PDR算法中,步行速度和距离的确定,不再使用惯性导航 对加速度积分的方法,而是利用步态信号的周期性和信号统计特征与行走速度相 关的规律,采用步频探测和步长估计的方法。本章将回顾目前存在的步行速度和 距离估计算法,介绍基于多传感器平台MSP加速度计的步频探测算法和步长模 型,详细说明引入肌电信号EMG进行步频探测和步长估计的方法,并通过大量 的实验论证各种算法和模型的有效性。 4.1 传统步频探测算法和步长估计模型 如第二章介绍,在个人导航中,当GPS接收机无法正常工作时,使用自包 含传感器来辅助导航定位任务。传统惯性积分机制因为低成本加速度计的误差太 大而不可用,必须考虑其它替代方法。于是有学者根据行人步态的运动生理学特 性,提出了通过步频探测和步长估计间接地确定步行速度和距离的方法,从而避 免了积分机制对初始对准过程的苛刻要求和误差随时间累积的弊端。 然而,尽管加速度信号波形随着个人行走呈现出周期性的特征,加速度计放 置在人身上不同部位其波形和周期明显不同,如上半身的加速度波形没有stance 阶段,下半身的加速度信号具有双峰等。首先明确复步和单步的定义。复步 (Stride),又叫跨步,其步长指从一只脚脚后跟着地到相同脚再次着地的距离。 单步(Step),其步长指一只脚着地到另一只脚着地之间的距离。1个复步等同于 1个完整步态(Gait Cycle),等于2个单步(Chai,2004)。当加速度计放置在人 上半身时,其测量的信号表现出与单步对应的波形,而放置在下半身时,其测量 的信号波形随该条腿对应复步变化,可参考图2.7。 由于加速度计测量的信号包含地球重力分量,受到仪器测量噪声和行走时身 体抖动的影响,开始步频探测前,一个必要步骤为信号预处理,剔除重力分量, 消除噪声,使加速度波形特征变得更清晰,如一个跨步对应信号经过降噪后从多 峰变为单峰。常用的预处理方法有:多点平滑(Fang et al,2005),低通滤波(Jee et al,1999:Mezentsev,2005b),差分处理(Weimann et al,2007),小波去噪 (Ladetto,2000)等。 针对人身体不同部位加速度波形不同的特点,目前存在大量步频探测方法, 但是部分步频探测算法应用于具体某一类波形。目前常用的步频探测算法有: 峰值探测法(Peak Detection):针对人体行走时上半身加速度信号每步呈现 39
2023-03-10 11:16:13 5.29MB 传感器辅助 室内定位 PDR算法
1
附件是室内定位技术源码,安卓平台下的iBeacon源代码
2023-03-06 17:28:59 216KB andriod 安卓 iBeacon 室内定位
1
针对传统WLAN指纹定位算法中存在的定位精度低、稳定性差、实时性不高等问题,提出一种基于CMAES-SVR的WLAN室内定位算法。该算法首先对接入点(AP)的接收信号强度(RSS)进行统计分析,采用高斯滤波对信号进行预处理,然后利用K-means聚类算法将原始指纹数据库中的定位区域进行聚类分块;其次采用协方差矩阵自适应进化策略(CMAES)优化支持向量回归机(SVR)参数,从而建立CMAES-SVR室内定位学习模型,通过该模型分别构建各定位子区域中RSS信号与物理位置非线性映射关系;最后判断测试点所属类簇,根据该类簇中训练好的CMAES-SVR模型进行回归预测。实验结果表明,与WKNN、传统SVR以及PSO-SVR算法相比,该算法在定位精度、稳定性以及实时性方面均有所提高。
2023-03-02 11:26:02 1.18MB 室内定位 位置指纹 聚类分析
1
针对RSS(接收信号强度)时变性以及不同终端信号接收能力的差异性,导致WLAN位置指纹定位不稳定的问题,基于RSS空间线性相关性提出一种新颖的位置指纹定位算法。在每个参考点分别采集多组RSS样本形成特征矩阵,并构建离线位置指纹数据库。定位时,通过计算实时RSS矩阵与指纹库参考点相关性,得到最相关的k个参考点,利用二次加权质心算法计算用户的最终位置。为了有效降低信号时变性的影响,采样时进行了滤波、排序等处理,构建离线指纹数据库时尽量增加采样次数,但需要对样本进行聚合处理以适应定位相关性计算。实验结果表明,该算法在保证较高定位准确度的同时,针对不同终端有更好的定位稳定性。
1