Python轨道交通客流预测系统源码.zip
2023-04-11 22:25:35 30KB python
1
以某地铁站系统的用户客流量数据为基础,补充研究当日包含的天气因素等数据,完成基于地铁出行平常日(不包含节假日)客流量数据的训练,实现对地铁站点的客流进行分析和预测。 通过 2019 年某地铁站的日客流量数据以及,每日天气因素的数据,进行相关数据处理之后,将数据分割 8:2 对应训练集及测试集,选择神经网络模型对训练集数据进行训练,并对测试集数据进行预测和可视化输出。 包含技术 本项目用到的主要技术包括: 数据科学:numpy,pandas 画图:matplotlib,seaborn 数据建模:sklearn 神经网络模型:LSTM
2023-02-18 22:26:57 3.95MB lstm LSTM 流量预测 客流量预测
1
基于单片机的景区客流人数统计系统设计
2023-02-07 15:18:06 1.49MB 基于 单片机 景区 客流人
1
大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。 大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。 测试阶段,大赛将提供某天所有线路所有站点的刷卡数据记录,选手需预测未来一天00时至24时以10分钟为单位各时段各站点的进站和出站人次。 预选赛阶段,测试集A集上,大赛将提供2019年1月28日的刷卡数据
2022-09-14 18:09:12 496.87MB 地铁客流数据集
1
大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。 大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。 测试阶段,大赛将提供某天所有线路所有站点的刷卡数据记录,选手需预测未来一天00时至24时以10分钟为单位各时段各站点的进站和出站人次。 预选赛阶段,测试集A集上,大赛将提供2019年1月28日的刷卡数据
2022-09-14 18:09:11 508.94MB 地铁客流数据集
1
大赛以“地铁乘客流量预测”为赛题,参赛者可通过分析地铁站的历史刷卡数据,预测站点未来的客流量变化,帮助实现更合理的出行路线选择,规避交通堵塞,提前部署站点安保措施等,最终实现用大数据和人工智能等技术助力未来城市安全出行。 大赛开放了20190101至20190125共25天地铁刷卡数据记录,共涉及3条线路81个地铁站约7000万条数据作为训练数据(Metro_train.zip),供选手搭建地铁站点乘客流量预测模型。训练数据(Metro_train.zip)解压后可以得到25个csv文件,每天的刷卡数据均单独存在一个csv文件中,以record为前缀。如2019年1月1日的所有线路所有站点的刷卡数据记录存储在record_2019-01-01.csv文件中,以此类推。同时大赛提供了路网地图,即各地铁站之间的连接关系表,存储在文件Metro_roadMap.csv文件中供选手使用。 测试阶段,大赛将提供某天所有线路所有站点的刷卡数据记录,选手需预测未来一天00时至24时以10分钟为单位各时段各站点的进站和出站人次。 预选赛阶段,测试集A集上,大赛将提供2019年1月28日的刷卡数据
2022-09-14 18:09:10 274.2MB 地铁客流数据集
1
包含工作日和周末的客流数据,近300万条数据,可能进行客流特征分析。
2022-08-08 19:23:57 30.15MB big data 大数据
15天引爆实体店客流,适用于所有餐饮店,突破单量瓶颈必学课程,首先要进行店铺诊断,找到自己门店真正的问题,通过外卖运营+抖音团购提高入店率、下单率,提高团购新客复购。 视频大小:4.6G
智慧景区客流统计解决方案.doc
2022-05-31 21:00:22 302KB 互联网 智慧方案
本文选取2015年1月至2016年3月中国部分车站的客流数据,建立了BP神经网络的铁路客流时间序列预测模型。 但由于收敛速度慢,容易陷入问题的局部最优解,建议通过遗传算法改进BP神经网络的时间序列模型,以预测铁路客流。 实验结果表明,改进的方法具有较高的预测精度和较好的非线性拟合能力。
2022-05-28 14:05:42 1.34MB 行业研究
1