基于FPGA的Cortex-M3 MCU系统:带AHB APB总线与UART硬件RTL源码,支持ARMGCC与SWD仿真调试,扩展功能丰富的MCU开发平台(暂不含DMA和高级定时器),基于FPGA的Cortex-M3 MCU系统:RTL源码工程,含AHB APB总线、UART串口、四通道定时器,配套仿真与驱动,可扩展用户程序与IP调试功能(非DMA和高级定时器版本),FPGA上实现的cortex-m3的mcu的RTL源码,加AHB APB总线以及uart的硬件RTL源代码工程 使用了cortex-m3模型的mcu系统,包含ahb和apb总线,sram,uart,四通道基本定时器,可以跑armgcc编译的程序。 带有swd的仿真模型。 可以使用vcs进行swd仿真读写指定地址或寄存器。 带有的串口uart rtl代码,使用同步设计,不带流控。 带有配套的firmware驱动,可以实现收发数据的功能。 带有的四通道基本定时器,可以实现定时中断,具有自动reload和单次两种模式。 用于反馈环路实现、freertos和lwip等时基使用。 暂时不包括架构图中的DMA,高级定时器和以太网,后期
2025-04-02 15:33:06 11.35MB 柔性数组
1
在嵌入式系统开发中,OpenCPU是一种常见的软硬件分离技术,它允许开发者在硬件平台上运行独立的操作系统和应用程序。ML307R是一款基于OpenCPU的微控制器,提供了丰富的功能,包括定时器服务。本篇文章将深入探讨ML307R如何利用osTimerNew函数来创建和管理定时器。 osTimerNew是FreeRTOS(一个实时操作系统)中的一个关键函数,用于创建一个新的定时器。在ML307R上,这个函数的应用可以帮助我们实现精确的时间控制,例如周期性任务、超时检测或延时操作等。以下是对osTimerNew函数及其在ML307R上的使用的详细介绍: 1. **osTimerNew函数介绍**: osTimerNew函数接受四个参数:回调函数指针、定时器类型(一次性或周期性)、定时器参数和定时器控制块。它返回一个指向新创建的定时器控制块的指针,该指针后续可以用于启动、停止或删除定时器。 2. **回调函数**: 回调函数是在定时器触发时执行的用户定义的函数。在ML307R上,你需要定义一个函数来处理定时事件,并将其地址作为osTimerNew的第一个参数。这个函数通常执行特定的任务,如更新状态、发送中断信号等。 3. **定时器类型**: osTimerType_t类型的参数定义了定时器的行为。可以设置为osTimerOnce(一次性定时器)或osTimerPeriodic(周期性定时器)。一次性定时器只触发一次,而周期性定时器会在设定的时间间隔后持续触发。 4. **定时器参数**: 第三个参数是一个可选的用户数据指针,可以传递给定时器回调函数。这使得回调函数能够访问与定时器相关的任何特定上下文信息。 5. **定时器控制块**: osTimerDef_t类型的结构体用于存储定时器的相关信息,包括其状态、回调函数等。在调用osTimerNew时,最后一个参数通常是一个由osTimerDef_t定义的变量,用于初始化定时器控制块。 6. **使用示例**: 在ML307R的代码中,首先定义定时器的回调函数,然后使用osTimerNew创建定时器。接着,通过osTimerStart启动定时器,指定需要等待的时钟节拍数。当不再需要定时器时,osTimerStop可停止定时器,osTimerDelete则可以安全地删除它。 7. **实际应用**: 在ML307R的定时器实验中,可能包含创建一个周期性的定时器,每经过一定时间就触发一个更新显示的任务,或者创建一个一次性定时器,在特定时刻执行一次唤醒设备的操作。 通过以上讲解,我们可以看出osTimerNew在ML307R上的使用是嵌入式开发中的重要环节,它允许开发者灵活地管理和调度系统的时间资源。了解并熟练掌握这个函数的用法,对于高效地编写ML307R上的实时应用程序至关重要。在实践过程中,结合具体的ML307R定时器实验,可以更深入地理解定时器的工作原理和应用技巧。
2025-02-13 08:42:55 8KB
1
**STM32 PWM多路定时器输出详解** 在嵌入式系统中,STM32微控制器因其丰富的功能和强大的性能而被广泛应用。其中,PWM(Pulse Width Modulation)是控制电机、LED亮度、模拟信号生成等应用的核心技术。STM32提供了多种定时器类型,以满足不同PWM通道需求。 **1. STM32 PWM定时器概述** STM32的定时器家族包括基本定时器(TIM2-TIM5)、高级定时器(TIM1和TIM8)和通用定时器(TIM6、TIM7、TIM9-TIM14)。在这些定时器中,除了基础定时器TIM6和TIM7,其余都支持PWM输出功能。 **2. 高级定时器TIM1和TIM8** 高级定时器可提供最多7路PWM输出,具体分配如下: - TIM1:CH1、CH2、CH3、CH4(每个通道都有独立的捕获/比较寄存器),以及CH1N、CH2N、CH3N(互补输出)。 - TIM8:与TIM1类似,但没有CH1N。 高级定时器适合需要多通道和高精度的应用,如电机控制。 **3. 通用定时器** 通用定时器(TIM2、TIM3、TIM4、TIM5)可同时产生4路PWM输出,分别对应于CH1、CH2、CH3和CH4。与高级定时器相比,通用定时器在通道数量上稍有减少,但依然能满足大多数应用需求。 **4. PWM模式配置** 配置STM32 PWM输出涉及以下步骤: - **选择定时器**:根据需要的PWM通道数和精度选择合适类型的定时器。 - **时基配置**:设置定时器的预分频器、自动重装载寄存器值,确定PWM周期。 - **通道配置**:选择工作模式(边沿对齐或中心对齐),设置捕获/比较寄存器值以确定PWM占空比。 - **极性配置**:设置输出极性,决定高电平或低电平时输出PWM信号。 - **使能定时器和输出**:开启定时器并启用PWM输出。 **5. PWM应用实例** 实验8 PWM多路定时器输出通常会演示如何配置STM32的定时器来驱动多个负载,如LED灯,通过改变PWM占空比实现亮度调节。通过编程实现不同通道的PWM信号同步或异步调整,可以深入理解定时器的工作原理和PWM输出的灵活性。 **6. 软件开发工具** 开发过程中,常使用的IDE如Keil uVision或STM32CubeMX,它们提供了图形化的配置界面,简化了定时器和PWM通道的设置。编写代码时,通常会用到HAL库或LL库函数来操作定时器。 总结,STM32的PWM功能强大且灵活,无论是高级定时器还是通用定时器,都能满足不同场景的需求。理解其配置和工作原理对于开发基于STM32的PWM应用至关重要。通过实践,如实验8 PWM多路定时器输出,开发者可以更好地掌握STM32的PWM功能,提升项目开发能力。
2024-09-18 23:26:09 819KB
1
基于HAL库,状态机编程STM32F103单片机实现按键消抖,处理按键单击,双击,三击,长按事件。开启定时器中断处理
2024-07-25 22:25:48 437KB stm32 编程语言 按键消抖
1
在STM32系列的单片机中,ADC采样是由定时器触发的。而在DMA模式下,定时器产生的触发信号可以控制DMA的数据传输。本文将详细介绍ADC采样的DMA方式与定时器的相关知识。 一、DMA数据传输模式 DMA是“直接存储器访问”(Direct Memory Access)的缩写。DMA使用专门的控制器,把CPU从数据传输过程中解放出来,让CPU可以集中处理程序的逻辑。DMA数据传输模式分为两种: 抢占模式:每次DMA传输时都会占用总线,因此如果有多个DMA在同时传输时,会出现争用问题,导致DMA数据传输出现不稳定情况。 循环模式:DMA会循环传输数据。如果需要传输的数据长度大于DMA缓冲区大小,DMA会自动从缓冲区首地址重新开始传输数据,直到传输完毕。 二、ADC采样的DMA方式 ADC采样通常使用DMA方式来保存采样的数据。DMA控制器将采样到的数据存储在缓冲区中,当缓冲区满时通知CPU去处理数据。DMA传输模式可以使用抢占模式或循环模式。 在STM32微控制器中,ADC(模拟数字转换器)采样经常采用DMA(直接存储器访问)方式,配合定时器触发,以实现高效、低延迟的数据采集。下面将详细阐述这种工作模式的实现步骤及关键知识点。 了解DMA的基本原理。DMA是一种允许外设直接访问内存的技术,无需CPU参与数据传输过程。它分为抢占模式和循环模式。抢占模式下,多个DMA传输可能引发总线冲突,影响数据传输的稳定性;而循环模式则能确保数据连续传输,即使数据量大于缓冲区大小,也能自动从缓冲区头开始继续传输。 在ADC采样过程中,DMA模式的应用使得ADC转换完成后,结果能直接存入预先设定的内存区域,即DMA缓冲区。当缓冲区满时,DMA控制器会通过中断通知CPU处理这些数据,避免了频繁的上下文切换,提高了系统效率。 接下来,我们来看实现ADC采样DMA方式的具体步骤: 1. **配置DMA**:使用STM32的HAL库,调用`HAL_ADC_Start_DMA()`函数启动DMA传输。在此之前,需设置DMA控制器参数,如传输方向(从ADC到内存),传输数据大小(通常为16位),以及数据缓冲区的起始地址。 2. **配置ADC**:在初始化ADC时,选择外部触发模式,并指定定时器作为触发源。这需要在ADC的初始化结构体中设置相应的触发配置。 3. **配置定时器**:定时器的配置至关重要,因为它决定了ADC采样的频率和节奏。需要设置计数器值、时钟分频因子、自动重载值以及触发模式,确保定时器产生的中断能够正确触发ADC的转换。 4. **启动设备**:依次启动定时器、ADC和DMA。定时器的启动使得其开始计数,达到预设值时产生中断,触发ADC采样;ADC在接收到触发信号后开始转换;而DMA则开始接收ADC转换后的数据并存入缓冲区。 在实际应用中,为了确保系统的稳定性和效率,还需要考虑以下几个方面: - **中断管理**:当DMA缓冲区满时,会产生中断请求。需要设置适当的中断服务函数,以便在CPU空闲时处理ADC采样数据。 - **资源分配**:合理规划DMA通道和定时器资源,避免冲突和资源浪费。 - **错误处理**:设置错误处理机制,监控ADC、DMA和定时器的状态,确保异常情况下的系统安全。 STM32通过DMA和定时器实现ADC采样,不仅可以提高数据采集速度,还能降低CPU负载,优化系统性能。这种方法广泛应用于实时数据处理和高精度测量系统中。在设计和实现过程中,理解每个组件的工作原理并恰当配置,是保证系统稳定高效运行的关键。
2024-07-17 18:58:32 13KB stm32
1
STM32 CUBEMX是ST公司提供的一个强大的软件工具,用于快速配置和初始化STM32微控制器。在这个“STM32 CUBEMX主从定时器配置PWM任意相位可调,占空比可调工程包方法二”中,我们将深入探讨如何使用CUBEMX来设置主从定时器,生成具有可调节相位和占空比的PWM信号。这种方法被认为优于其他方法,因此值得优先考虑。 让我们理解PWM(脉宽调制)的基本概念。PWM是一种模拟信号控制技术,通过改变脉冲宽度来模拟不同电压等级。在STM32中,我们可以利用定时器的比较单元来生成PWM信号,通过调整比较值来改变占空比,而通过定时器的启动时间来调整相位。 在CUBEMX中配置主从定时器时,你需要遵循以下步骤: 1. **选择定时器**:在CUBEMX界面中,选择你要使用的STM32型号,然后在"Peripherals"部分找到并启用至少两个定时器,一个作为主定时器,另一个作为从定时器。 2. **模式配置**:将主定时器配置为PWM模式,并选择合适的计数模式(向上、向下或中心对齐)。从定时器也需要配置为PWM模式,通常跟随主定时器的计数方向。 3. **预分频器和自动装载值**:根据所需频率,设置主定时器的预分频器和自动装载值。从定时器的这些值通常与主定时器同步。 4. **通道配置**:为每个定时器的输出通道(例如,TIMx_CH1、TIMx_CH2等)启用PWM模式,设置极性和输出状态。 5. **PWM参数**:在每个通道的“Capture/Compare”设置中,可以调整比较值来改变占空比。对于相位调整,可以使用主定时器的触发事件来同步从定时器的启动。 6. **同步信号**:设置主定时器的中断或更新事件,使其可以触发从定时器的重载或启动,从而实现相位同步。 7. **代码生成**:完成上述配置后,点击“Generate Code”按钮,CUBEMX会自动生成相关的初始化代码和HAL库函数,这些函数可用于在应用中设置和控制定时器。 8. **应用编程**:在生成的代码基础上,编写用户程序以控制PWM的开启、关闭、占空比和相位调整。这通常涉及调用HAL_TIM_PWM_Start()、HAL_TIM_PWM_PulseFinishedCallback()等函数。 9. **调试与优化**:运行并测试你的程序,确保PWM信号按照预期工作。如果需要,可以进一步调整定时器配置以优化性能或满足特定需求。 这个方法二可能包括了更高级的同步机制,如使用外部触发事件或更复杂的内部定时器同步,使得PWM相位调整更加精确。通过CUBEMX,开发者可以高效地配置这些高级功能,而无需深入了解底层硬件细节,极大地提高了开发效率。 使用STM32 CUBEMX配置主从定时器以生成可调节相位和占空比的PWM信号,是一种实用且高效的方案,尤其适合需要精确控制电机速度、亮度或其他模拟信号的场合。通过理解这些配置步骤和背后的原理,开发者能够更好地掌控STM32的定时器功能,实现更多复杂的应用。
2024-07-08 15:42:27 12.12MB stm32
1
STM32F103使用定时器触发ADC采集,使用LL库,注释详细,便于移植使用
2024-07-02 14:54:19 15.29MB stm32 ADC
1
近年来,随着计算技术、通信技术的飞速发展,特别是互联网的迅速普及和3C(计算机、通信、消费电子)合一的加速,微型化和专业化成为发展的新趋势,嵌入式产品成为信息产业的主流。
2024-06-11 20:47:19 367KB 嵌入式Linux
1
【免积分】【免费】【带仿真】这款51单片机例程涵盖了从简单的点灯控制到传感器驱动等丰富功能,所有调用的函数都已写好,无需你再费心编写。无论你是初学者还是高手,都能轻松上手,快速实现自己的创意想法。
2024-06-10 18:40:36 30KB 资源合集
1
今日继续学习使用嘉立创购买的 立创梁山派天空星,芯片是 STM32F407VET6 因为已经有学习基础了,所以学习进度十分快,这次也是直接一块学习配置定时器与串口了,文章也愈来愈对基础的解释越来越少了...... 文章提供测试代码讲解、完整工程下载、测试效果图 学习目标: 配置串口发送功能,自定义串口print函数、定时器计数计时中断功能,定时器每隔1000ms使用串口发送一次数据
2024-06-10 11:17:07 9.71MB stm32
1