该小实验基于普中STM32-PZ6806L开发板,综合GPIO、RCC、位带操作、SysTick 滴答定时器、按键、外部中断、定时器中断、PWM呼吸灯等。 - 按下K_UP启动,D8灯展现呼吸灯的效果,表示系统启动,K_UP不按下无法选择模式,任何模式下再次按下K_UP,系统重新启动,D8灯展现呼吸灯的效果。 - 按下K_DOWN停止,8个灯全灭,在任何状态按下K_DOWN,系统都停止。 - 按下K_LEFT模式一:8个小灯先全灭,然后在系统时钟为72MHZ下,8个灯以1S的时间间隔依次循环点亮 (流水灯) - 按下K_RIGHT模式二:8个小灯先全灭,然后更改时钟为36MHZ,观察流水灯变化
2025-05-11 16:48:01 7.4MB stm32
1
STM32F103C6是意法半导体(STMicroelectronics)生产的基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。Proteus是一款电子设计自动化软件,可以进行虚拟原型设计和仿真,使得在硬件制作之前就能验证程序功能。 在这个项目中,我们关注的是STM32F103C6如何利用定时器触发ADC(模拟数字转换器)采样,再通过DMA(直接存储器访问)将数据传输到MCU的内存,并最终通过串口发送出去。这是一个典型的实时数据采集和通信应用。 1. **定时器触发ADC采样**: - 定时器(Timer)在STM32中常用于生成精确的时间间隔,它可以配置为中断或DMA请求源。在此案例中,定时器被设置为在特定周期后触发ADC转换,确保采样频率的稳定。 - ADC(ADC1、ADC2或ADC3)配置为外部触发模式,选择相应的定时器作为启动信号。当定时器的特定事件发生(如更新事件)时,ADC开始执行一次或连续的转换。 2. **ADC DMA配置**: - DMA(Direct Memory Access)允许数据在没有CPU干预的情况下从外设直接传输到内存或反之。在本项目中,ADC的转换结果通过DMA通道传输到SRAM,减轻了CPU负担,提高了系统效率。 - 需要配置DMA控制器,选择正确的通道、优先级和数据宽度,同时设置ADC的DMA请求源为定时器触发。 3. **串口通信**: - STM32F103C6内置USART(通用同步/异步收发传输器)或UART接口,用于与外部设备进行串行通信。在这个项目中,采样数据被送入内存后,可能通过USART发送到其他设备,如PC或其他微控制器。 - USART需要配置波特率、数据位、停止位、奇偶校验等参数,并开启中断或DMA发送,以便在数据准备好后立即发送。 4. **项目文件解析**: - `adcdma.ioc`:这是Proteus项目的配置文件,包含了电路图的元器件布局和连接关系。 - `.mxproject`:可能是Keil MDK工程文件,包含编译和调试项目所需的配置。 - `adcdma.pdsprj`:可能是另一个版本的项目文件,可能对应不同的IDE或编译器。 - `wx shitoudianzikai.txt`:这看起来是一个文本文件,可能是项目相关的说明或者日志。 - `联系我.url`:一个链接文件,可能指向开发者提供的联系方式。 - `adcdma.pdsprj.wanmeiyingjianp.wanmeiyingjian.workspace`:可能是开发环境的工作区文件,保存了工作空间的设置和布局。 - `Drivers`、`Core`、`MDK-ARM`:这些文件夹可能包含驱动库、核心库以及MDK-ARM编译工具链的文件。 5. **开发流程**: - 在Proteus中搭建STM32F103C6和其他必要的组件,如ADC、串口模块、定时器和可能的虚拟示波器或终端。 - 使用Keil MDK编写C代码,配置定时器、ADC、DMA和串口,并实现相应的功能函数。 - 在Keil MDK中编译代码,生成HEX或BIN文件。 - 将生成的二进制文件烧录到Proteus中的STM32模型,然后启动仿真,观察数据采集和传输是否正常。 这个项目展示了STM32在实时数据采集和通信中的应用,结合了定时器、ADC、DMA和串口通信等多个关键功能,对于学习STM32和嵌入式系统开发具有很高的实践价值。
2025-05-07 16:34:40 21.02MB stm32 proteus
1
GD32F407VET6单片机实验程序源代码4.定时器1ms中断
2025-05-05 10:35:44 401KB
1
在本项目中,我们探讨的是一个使用Keil C语言编写的单片机电子时钟实例。这个实例展示了如何利用单片机实现一个具备秒、分、时计时、定时器和闹钟功能的电子时钟。以下是这个项目涉及的关键知识点: 1. **Keil C编程**:Keil C是广泛应用于微控制器编程的开发工具,它提供了丰富的库函数和便捷的集成开发环境(IDE)。在这个实例中,Keil C被用来编写控制单片机运行的程序,实现时钟的逻辑运算和控制功能。 2. **单片机控制**:单片机是电子时钟的核心,负责处理所有的计时和控制任务。通过编程,单片机可以实时更新和显示时间,并执行定时和闹钟功能。 3. **中断系统**:中断是单片机处理外部事件的一种重要机制。在这个电子时钟项目中,中断被用于检测时间的递增,比如秒、分、时的进位,以及定时器和闹钟的触发。中断使单片机能够保持高效率,因为它们允许程序在执行其他任务的同时响应事件。 4. **定时器功能**:定时器是单片机内建的功能模块,用于周期性地产生中断。在电子时钟中,定时器可能被设置为固定的时间间隔,以更新时间显示或者触发特定的事件,如闹钟。 5. **闹钟功能**:闹钟功能是电子时钟的一个重要特性,它允许用户预设一个时间点,当到达预设时间时,闹钟会发出提示。在单片机程序中,这可能通过比较当前时间与预设闹钟时间来实现。 6. **Proteus仿真**:Proteus是一款强大的电路仿真软件,它能帮助开发者在实际硬件焊接前验证电路设计。在这个项目中,电路图是用Proteus设计的,通过仿真可以检验硬件连接和程序逻辑的正确性,大大提高了开发效率和准确性。 7. **中断查询控制**:描述中提到的“采用中断方式查询中断控制”意味着程序会定期检查是否有新的中断发生,一旦检测到中断,就会执行相应的中断服务程序。 8. **文件结构**:尽管压缩包中的文件列表只有一个“闹钟”,但通常在这样的项目中,可能包括了源代码文件(.c和.h)、项目配置文件(.uvproj)、电路图文件(可能是.pro或.liberary)等。这些文件共同构成了电子时钟的完整解决方案。 这个项目对于学习单片机编程和理解实时系统运作原理的学生或工程师来说,是非常有价值的参考资料。它涵盖了从软件设计到硬件模拟的全过程,有助于提升实践能力和理论知识。
2025-05-03 16:13:18 71KB keil
1
简单速度运行计时器 用于OBS的lua脚本,为定时内容(马拉松,超速运行等)提供热键控制的文本计时器。 笔记 您可以取消暂停计时器。 这将导致它向前快照,就好像从未暂停过一样。 这是为了解释马拉松中的意外停顿。 另外,您只能在暂停时重置计时器。 这有助于防止马拉松中的意外重置。 参考
2025-04-24 10:14:15 3KB Lua
1
STM32F103系列微控制器是基于ARM Cortex-M3内核的高性能微处理器,广泛应用在嵌入式系统设计中。在这个项目中,我们关注的是STM32F103的通用定时器(General Purpose Timers)在C语言编程环境下的使用,特别是在keil开发工具中的实现。 通用定时器在STM32F103中有多个实例,包括TIM1、TIM2、TIM3、TIM4和TIM5等,它们提供了丰富的功能,如计数、脉冲宽度调制(PWM)、捕获/比较等。这些定时器可以独立工作,且具有较高的灵活性,因此在实时控制系统和许多其他应用中非常有用。 我们需要了解通用定时器的基本结构。每个通用定时器都包含一个16位自动装载寄存器(ARR)和一个16位的计数器(CNT),计数器从0递增到ARR的值,然后重置回0,形成一个周期性循环。此外,还有预分频器(PSC)用于对输入时钟进行分频,以调整定时器的计数频率。 在keil开发环境中,配置和控制STM32的通用定时器通常涉及以下几个步骤: 1. **初始化**:设置定时器的工作模式,比如向上计数模式,选择时钟源(APB1或APB2的预分频器),并设置预分频器的值以达到所需的定时精度。 2. **通道配置**:如果需要使用PWM或捕获/比较功能,需要配置相应的通道。这包括选择通道模式(例如,PWM模式1或模式2),设置比较值以及使能通道。 3. **中断和DMA设置**:根据应用需求,可能需要开启定时器的中断,以便在特定事件(如更新事件、计数到零或捕获事件)发生时执行相应处理函数。也可以启用DMA,让定时器触发数据传输。 4. **启动定时器**:通过写入TIMx_CR1寄存器的`CE`位(Counter Enable)启动定时器。 在提供的压缩包"6 TIMER"中,很可能包含了针对STM32F103通用定时器的C代码示例。这些示例可能涵盖不同定时器功能的用法,例如简单的周期性中断、PWM输出或捕获输入信号的值。通过阅读和理解这些代码,可以更好地掌握如何在实际项目中应用通用定时器。 在学习和使用这些代码时,要特别注意以下几点: - **理解寄存器操作**:STM32的外设操作主要通过读写相关寄存器来完成,理解寄存器的含义和作用是关键。 - **时序和同步**:确保在初始化和启动定时器时遵循正确的时序,避免因不正确的操作导致意外行为。 - **调试和测试**:使用keil的调试工具进行单步调试,观察变量变化和中断触发,确保程序按照预期工作。 - **参考手册**:查阅STM32F103的数据手册和参考手册,这是获取最准确信息的来源。 通过这个项目,你不仅可以掌握STM32F103通用定时器的使用,还可以提升在keil环境下编写C程序的能力,对于嵌入式开发工作大有裨益。
2025-04-14 19:39:32 556KB STM32F103 通用定时器
1
最近自己在网上搜了很多资料,发现很多的红外解码,关于重码的处理的代码很少,分享一下红外解码包括重码的处理。 使用单片机:EN8F156 功能说明:红外遥控器解码,只使用定时器T0定时100us进行按键解码,处理按键短按与长按,将解码的数据通过串口打印。 /*************************************** 功能说明:红外遥控器解码,定时器T0定时100us进行按键解码,处理按键短按与长按,串口打印解码数据。 ****************************************/ #include SYSCFG.h #define uchar 本文主要介绍如何使用8位单片机EN8F156仅通过一个定时器T0实现红外遥控器的解码,同时处理按键的短按和长按事件,并通过模拟串口打印解码出的数据。红外遥控器解码是电子设备控制领域的一个常见应用,它允许用户通过遥控器对设备进行远程操作。 单片机EN8F156的定时器T0被设置为每隔100us进行一次中断,这个间隔时间对于红外遥控信号的解析非常关键。红外遥控信号通常由一系列的高电平和低电平脉冲组成,这些脉冲编码了不同的按键信息。通过精确地测量这些脉冲的长度,可以解码出遥控器发送的指令。 在这个设计中,定义了一些关键变量用于存储解码过程中的信息。例如,`Receive_Count`记录接收的脉冲数,`Low_Level_Time`和`High_Level_Time`分别记录低电平和高电平的时间,`UserCode_High`和`UserCode_Low`用于存储用户码的高位和低位,`Data_Code`用于存放数据码,而`Repeat_Count`用于统计重码出现的次数。此外,还有一系列的标志位,如`Data_Receive_Flag`、`Begin_Flag`等,用来标记解码的不同阶段和状态。 在初始化过程中,单片机的系统时钟被设置为2MHz,这对于定时器T0的精度非常重要。同时,红外输入端口IR_PIN(这里为PA2)被配置为输入模式,串口发射端口PIN_TX(这里为PC0)被配置为输出模式,以实现数据的串口通信。 中断服务程序ISR主要处理定时器T0的中断,当检测到红外输入端口的电平变化时,会根据当前的解码状态执行相应的操作。例如,如果检测到的是低电平,且已经找到了同步码(即`Data_Receive_Flag==1`),那么就会开始记录低电平的持续时间,这有助于区分不同类型的脉冲,从而解码出按键信息。 对于按键的短按和长按处理,可以通过设定一个阈值来判断。例如,如果连续接收到的信号在一定时间内没有变化,可能就表示用户持续按下某个按键,这就构成了长按;反之,如果信号在短时间内频繁变化,则表示用户快速按下并释放按键,即短按。 解码出的数据会通过模拟串口打印出来。在单片机中,模拟串口通常是指使用GPIO引脚模拟UART接口,实现与外部设备的通信,如电脑的串口调试助手。这种方式简化了硬件设计,但可能需要更复杂的软件协议来确保数据的正确传输。 这个设计巧妙地利用了一个定时器和一些基本的逻辑判断来实现红外遥控的解码,同时也考虑了重码的处理,提高了解码的可靠性。通过串口通信,可以方便地将解码结果输出,便于调试和分析。这样的实现方式在资源有限的8位单片机中是相当经济和实用的。
2025-04-14 18:25:13 58KB 串口
1
1、第一二状态判断引导码是否按NEC协议 2、第三、四、五、六状态接收数据 判断逻辑1高电平持续时间是否大于3个250us,实际测得是1600us左右,因为进入中断需要250us时间所以选择3*250, 逻辑0的高电平不大于560us,不可能大于3个250,所以很好可以区分逻辑0和逻辑1. 3、状态切换时需要特别注意引脚电平的状态
2025-04-14 11:31:40 2KB 红外NEC接
1
STM32F407VGT6是一款基于ARM Cortex-M4内核的微控制器,由意法半导体(STMicroelectronics)生产。它广泛应用于各种嵌入式系统设计,特别是需要高性能计算和实时控制的场合。在STM32F407VGT6中,定时器是实现精确时间控制和中断功能的关键组件。本实验将深入探讨如何利用STM32F407VGT6的定时器功能,以及如何设置和处理定时器中断。 我们需要了解STM32中的几种主要定时器类型:基本定时器(TIM2、TIM3、TIM4、TIM5)、高级定时器(TIM1、TIM8)和通用定时器(TIM6、TIM7)。在这个实验中,我们可能关注的是高级定时器或通用定时器,因为它们支持中断功能,并且具有较高的计数频率。 在keil5开发环境中,我们需要配置STM32F407VGT6的外设库,这通常涉及到以下步骤: 1. **项目配置**:在Keil IDE中,打开工程属性,选择Target选项卡,然后在C/C++选项中包含STM32F4xx的头文件路径,确保库函数可用。 2. **定时器初始化**:在代码中,我们需要初始化选定的定时器。例如,对于高级定时器TIM1,可以调用`RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);`来开启时钟,然后通过`TIM_TimeBaseInitTypeDef`结构体设置定时器的周期、预分频因子、计数模式等。 3. **中断使能**:为了使用定时器中断,我们需要启用相应的中断源。如`TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);`开启更新中断。 4. **中断服务函数**:在中断服务程序中,我们将处理定时器中断事件。例如,`void TIM1_UP_IRQHandler(void)`是TIM1更新中断的默认中断服务函数,这里可以编写中断处理逻辑。 5. **启动定时器**:通过`TIM_Cmd(TIM1, ENABLE);`启动定时器,使其开始计数。 在实验中,我们可能会遇到定时器的几种工作模式,如自由运行模式、单脉冲模式、重复计数模式等,每种模式都有其特定的应用场景。同时,定时器的计数方向(向上计数或向下计数)、预装载寄存器的使用、更新事件的产生等都是需要考虑的因素。 定时器中断的处理过程包括了中断请求、中断向量表查找、进入中断服务函数、执行中断处理代码以及中断退出。在STM32中,中断优先级由NVIC(Nested Vectored Interrupt Controller)管理,可以通过设置NVIC初始化结构体来调整中断优先级。 在实际应用中,定时器中断常用于执行周期性任务,如PWM输出、ADC采样同步、延时服务、事件计数等。通过合理的中断处理,可以实现高效的时间管理,提高系统的响应速度。 总结来说,"信盈达STM32F407VGT6定时器中断实验"涵盖了STM32微控制器的定时器配置、中断设置、中断服务函数编写等核心知识点。通过这个实验,学习者可以深入了解STM32的定时器功能,掌握中断机制,并将其应用于实际的嵌入式系统设计中。
2025-04-14 09:57:56 8.93MB keil5
1
基于FPGA的Cortex-M3 MCU系统:带AHB APB总线与UART硬件RTL源码,支持ARMGCC与SWD仿真调试,扩展功能丰富的MCU开发平台(暂不含DMA和高级定时器),基于FPGA的Cortex-M3 MCU系统:RTL源码工程,含AHB APB总线、UART串口、四通道定时器,配套仿真与驱动,可扩展用户程序与IP调试功能(非DMA和高级定时器版本),FPGA上实现的cortex-m3的mcu的RTL源码,加AHB APB总线以及uart的硬件RTL源代码工程 使用了cortex-m3模型的mcu系统,包含ahb和apb总线,sram,uart,四通道基本定时器,可以跑armgcc编译的程序。 带有swd的仿真模型。 可以使用vcs进行swd仿真读写指定地址或寄存器。 带有的串口uart rtl代码,使用同步设计,不带流控。 带有配套的firmware驱动,可以实现收发数据的功能。 带有的四通道基本定时器,可以实现定时中断,具有自动reload和单次两种模式。 用于反馈环路实现、freertos和lwip等时基使用。 暂时不包括架构图中的DMA,高级定时器和以太网,后期
2025-04-02 15:33:06 11.35MB 柔性数组
1