这里是100张电动车图像数据集,还有400张在主页,都是jpg格式,可用于机器学习、神经网络、深度学习中训练模型,我是用Python的标注工具labelimg进行标注,再利用YOLOv5进行训练自己的模型。图像清晰度可观,
2025-03-29 15:53:14 217.72MB 神经网络 深度学习 数据集
1
数据包包含中国北京、上海、深圳9个充电桩数据,原始文件包含桩位、时间、车辆状态、SOC(充电状态)、电流、电压、温度等信息,数据点以约18s为单位采样一年半,处理后的数据包含时间和充电功率,分辨率为18s和1h。 在当前社会发展背景下,随着新能源汽车行业的飞速发展,电动汽车充电站数据的重要性日益凸显。本数据包详细记录了中国一线城市北京、上海和深圳的九个充电桩的数据,涵盖了从桩位分布到电动汽车充电过程中的实时状态等多个维度。数据集详细记录了包括桩位、时间、车辆状态、SOC(充电状态)、电流、电压和温度等关键信息,是进行数据分析和机器学习的重要基础资源。 通过对这些数据进行分析,可以对充电站的使用情况、充电设备的性能表现以及电动汽车的充电行为等有一个全面的了解。例如,时间序列数据可以帮助我们了解充电站的高峰使用时段,从而优化充电站的电力调度和充电桩的布局规划。车辆状态和SOC数据则可以反映出电动汽车在不同时间点的充电需求和充电行为模式。此外,电流、电压和温度等数据对于评估充电设备的运行状况,预防潜在故障,保障充电安全具有重要意义。 原始数据文件以约每18秒为一个数据采样点,连续采集了一年半的时间序列数据。这种高频采样的原始数据对于研究充电站的短期运行模式和电动汽车的充电习惯具有较高的价值。处理后的数据则以18秒和1小时为分辨率,提供了时间和充电功率信息。高分辨率数据允许我们更细致地分析短时间内的变化趋势,而低分辨率数据则有助于捕捉长期的运行规律和模式。 这份数据集不仅可以用于对充电站日常运营的监测与管理,还能够被广泛应用于机器学习和大数据分析领域。例如,利用机器学习算法,可以从海量数据中识别出影响充电效率的关键因素,预测充电需求,优化充电站的运维策略,甚至可以为自动驾驶汽车的充电路径规划提供决策支持。此外,数据集还可以用来评估不同品牌和型号电动汽车的性能表现,为消费者提供更详尽的购车参考。 这份包含详尽信息的电动汽车充电站数据集,不仅为城市能源管理提供了有力的数据支持,也为新能源汽车行业的研究者和开发者提供了宝贵的实验材料,有助于推动整个行业的持续健康发展。
2025-03-29 15:29:02 248.96MB 数据集 机器学习
1
微信小程序作为当前移动互联网领域的热点之一,它便捷的开发方式和丰富的应用场景吸引着广泛的开发者群体。特别是对于编程初学者和大学生而言,微信小程序不仅是学习编程的良师益友,更是实践项目经验的捷径。本教程以“运动”为主题,通过基础且简单的代码逻辑,旨在帮助初学者快速入门微信小程序开发,并提供了完整的课程作业或自学方案。 微信小程序的开发涉及到前端的界面设计和后端的数据处理。前端主要使用WXML(微信标记语言)、WXSS(微信样式表)和JavaScript,后端则可以使用云开发,利用微信云函数处理数据,并将结果存储在微信云数据库中。本教程将重点放在前端的基础操作上,通过模拟运动数据的展示和简单交互,帮助学习者掌握小程序的基本框架和功能实现。 课程内容将涵盖以下几个部分: 1. 微信小程序基础:包括小程序的注册、配置、框架结构、运行环境搭建等。这一部分是小程序开发的起点,学习者将了解到如何通过微信官方提供的开发者工具开始小程序的开发之旅。 2. 前端界面设计:通过WXML来布局小程序页面,WXSS设置页面样式,以及JavaScript实现页面逻辑。这一部分是小程序的主体部分,学习者将学会如何将设计转化为可交互的页面。 3. 用户交互设计:实现用户点击、滑动等操作时页面的响应逻辑。这部分将涉及到事件处理和数据绑定,是提高用户体验的关键。 4. 运动数据展示:结合运动主题,设计数据展示界面,如步数统计、运动量展示等。这里将引入列表展示和数据绑定的基础知识,使学习者能够将抽象的数据转化为直观的图形和表格。 5. 云开发基础:在简单的运动数据处理中引入微信云开发的概念,包括如何在小程序中调用云函数,以及如何在云数据库中进行数据的增删改查操作。这部分内容为学习者打开后端开发的大门。 6. 调试和部署:小程序开发完成之后,需要进行多轮测试以确保功能的正确性和稳定性。学习者将学习如何在微信开发者工具中进行调试,以及如何将小程序提交审核并发布上线。 整个教程注重实践操作,每一个概念和知识点都会配有实例代码和操作演示,确保学习者能够跟随教程一步步实现自己的小程序。此外,教程还会提供一些常见的问题和解决方案,帮助初学者克服开发过程中可能遇到的难题。 对于大学生而言,本教程适合作为课程的结课作业,因为它能够帮助学生巩固课堂上学到的理论知识,并通过实际动手开发一个小程序来提升实战能力。对于编程新手或自学爱好者,本教程也是一个非常好的起点,它将复杂的编程概念简化,让初学者在短时间内能够完成一个功能完善的小程序,从而激发学习的热情和兴趣。 本教程的项目实践,不仅限于“运动”主题,学习者完全可以根据个人兴趣,对小程序的主题和功能进行拓展和创新。通过微信小程序平台,每个人都有机会将自己的创意变为现实,为用户提供便捷的服务。 本教程提供了一个从零开始学习微信小程序开发的完整路径,无论你是编程新手还是希望通过项目实践来提升自己的大学生,都可以通过本教程获得宝贵的经验和技能。随着小程序生态的不断壮大,掌握小程序开发将成为越来越多开发者的重要技能之一。因此,这不仅是一个学习项目,更是一个把握未来技术趋势的起点。
2025-03-29 12:59:19 4.26MB wechat
1
【模式识别】是一门涉及广泛领域的研究生课程,主要研究如何让计算机系统自动识别并理解现实世界中的各种模式。这门课程通常包括多个关键主题,旨在训练学生理解和应用一系列算法来解决实际问题。以下是对这些主题的详细解释: 1. **贝叶斯决策理论**:这是一种基于概率的决策框架,它利用先验知识来更新我们对事件可能性的理解。在模式识别中,贝叶斯决策理论用于评估不同类别假设的概率,并基于这些概率作出最佳决策。 2. **概率密度函数的估计**:在统计学中,概率密度函数(PDF)描述了随机变量的概率分布。在模式识别中,我们需要估计数据的PDF,以便理解其内在结构。常见的估计方法包括最大似然估计、核密度估计等。 3. **线性分类器**:线性分类器如支持向量机(SVM)和逻辑回归,是模式识别中基础且重要的工具。它们通过构建超平面将数据分隔到不同的类别,对于线性可分的数据集,这类模型往往表现优秀。 4. **聚类分析**:聚类是一种无监督学习方法,目的是将数据点分组到不同的簇中,使得同一簇内的数据相似度高,而不同簇间的数据相似度低。常见的聚类算法有K-means、DBSCAN等,它们在模式识别中用于发现数据的自然结构。 5. **非线性分类器及神经网络**:当数据不是线性可分时,非线性分类器如决策树、随机森林和神经网络变得至关重要。神经网络尤其具有强大的表达能力,通过多层非线性变换可以模拟复杂模式。 6. **特征选择与特征提取**:在模式识别中,选择或提取合适的特征对模型性能至关重要。特征选择关注于剔除冗余或不相关的特征,而特征提取则尝试从原始数据中创建更有用的新特征,如PCA(主成分分析)和LDA(线性判别分析)。 7. **补充实例:灰度图像二值化阈值选取常用方法**:在图像处理领域,二值化是一种将图像转化为黑白两色的过程,便于后续分析。常用的阈值选取方法包括全局阈值法、自适应阈值法等,这些方法在模式识别中的图像识别任务中起到关键作用。 这些内容构成了一套完整的模式识别课程,涵盖了从基本理论到实际应用的各个方面,为学生提供了深入理解和应用机器学习算法的基础。通过学习这些主题,研究生将能够设计和实现自己的模式识别系统,解决现实生活中的各种挑战。
2025-03-29 10:19:13 21.94MB 模式识别 机器学习
1
小样本学习-专利分类-自然语言处理_FewShotClassification
2025-03-28 23:59:50 17.27MB
1
中国工业经济刊登的文章,另外还有引用的代码程序、算法和原始数据及分析研究结果(见相同论文标题的另外附加文件)。《中国工业经济》期刊勇立潮头,率先在国内期刊界公开论文数据和程序等资料,代码数据开源,让论文结果复制成为可能,方便大家基于此做更深入的分析和研究。
2025-03-28 21:28:43 1.18MB
1
银行卡电信诈骗危险预测 一、包含以下实验: 使用机器学习算法(包含三个算法,分别为KNN、决策树、集成学习bagging),实现银行电信诈骗数据集实现二分类任务; 二、包含一个课程汇报PPT: 1、数据集介绍; 2、算法介绍; 3、实验步骤(包含数据分析探索+模型建立+融合模型); 4、实验结果及分析; 运行平台:jupyter; 二分类准确率(acc)都是99%以上,对于小白上手学习机器学习,是一个非常不错的练手项目;对于正在上数据分析、数据挖掘、机器学习课程的同学来说,这也是一个非常不错的汇报项目,可以直接拿里面的课程ppt进行汇报;
2025-03-28 17:30:57 80.05MB 机器学习 课程资源 数据集
1
基于Harry Potter的数据可视化数据集,内含2个工作簿,第一个的内容为人物关系的字段,第二个工作簿为人物名字以及他的传记的介绍。详细代码介绍参考https://blog.csdn.net/qq_57329395/article/details/127224354#comments_24427142。通过networkx进行关系图的绘制。 由于networkX是根据edge的关系来绘图,我们需要将关系整理成为元组格式,如('Sirius Black', 'Harry Potter')编号转名字将所有关系保存到列表里即可使用add_edges_from来绘制关系图。 我们拿到的数据有两个分页,分页character含有全部的哈利波特全部的人物姓名和id号及任务简介;分页relation含有带有id号的人物关系,但是该分页没有人物的姓名。我们需要整理数据为以下格式:('Sirius Black', 'Harry Potter')。
1
机器学习模型案例与SHAP解释性分析:涵盖类别与数值预测,CatBoost、XGBoost等六大模型深度解析及SHAP分析比较,shap分析代码案例,多个机器学习模型+shap解释性分析的案例,做好的多个模型和完整的shap分析拿去直接运行,含模型之间的比较评估。 类别预测和数值预测的案例代码都有,类别预测用到的6个模型是(catboost、xgboost、knn、logistic、bayes,svc),数值预测用到的6个模型是(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn),机器学习模型; SHAP解释性分析; 多个模型比较评估; 类别预测模型(catboost、xgboost、knn、logistic、bayes、svc); 数值预测模型(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn); 完整shap分析代码案例; 模型之间比较评估。,"多模型SHAP解释性分析案例集:类别预测与数值预测的全面比较评估"
2025-03-27 23:28:10 47KB ajax
1
内容概要:本文介绍了一种利用DeeplabV3+模型进行视杯与视盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可视化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出视网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1