8051单片机是一种经典的微控制器,广泛应用于嵌入式系统中。为了适应硬件升级的需要,往往需要在线升级单片机的程序,即所谓的远程软件升级或固件升级。而8051单片机本身并不提供高级的在线升级功能,因此,需要设计特殊的机制以实现这一需求。本文介绍了如何通过分析8051单片机的特点,提出了一种低成本的在线升级软件的方法。 该方法采用了一种引导装载程序(Bootloader)的概念。Bootloader是一段始终存在于系统中的程序代码,它在单片机上电复位时首先被执行。Bootloader的主要功能是判断是运行已有的程序还是从外部设备下载新的程序。8051单片机可以执行内部或者外部的程序,而外部的E2PROM编程相对简单。因此,将Bootloader代码烧写在内部存储空间中,并将更新的系统应用程序存储在外部E2PROM中,这使得系统程序可以随时更新。 在系统加电后,8051单片机首先执行内部的Bootloader。这段代码负责将外部E2PROM中的程序拷贝到外部RAM中,同时通过通信接口监听主机的命令。当收到更新程序的请求后,Bootloader接收新的应用程序代码,并将其写入E2PROM中。此后,系统软件复位并执行外部RAM中的新程序。 硬件上,由于8051单片机不支持直接向外部程序存储器写数据,因此需要借助特殊的电路和逻辑设计来实现。8051单片机的外部访问时序上,读取代码使用PSEN信号,而读取数据则使用RD信号。为了实现对外部程序存储器的写操作,可以将PSEN和RD信号逻辑合并,使得单片机可以通过MOVX指令对外部程序空间的内容进行读写操作。 在硬件参考电路中,D触发器用于控制单片机的EA(外部访问)信号。在系统上电后,D触发器通过延迟电路输出短暂的低电平信号,强制EA为高电平,从而使单片机首先执行内部的Bootloader。在Bootloader执行期间,若接收到上位机的特定握手字符串,单片机会复位并重新执行Bootloader,以便接收新的程序代码。 软件设计方面,Bootloader的主要工作包括两个部分:一是将E2PROM中的程序代码拷贝到片外RAM中;二是在接收到上位机的更新程序命令时,接收新的代码内容并更新到E2PROM中。Bootloader的编程一般需要使用8051的汇编语言或者嵌入式C语言,并且需要考虑各种边界条件和异常处理。 在软件设计中,使用了特定的宏定义和数据结构来定义8051单片机的硬件特性,如端口操作、时序控制等。编程时,需要注意的是一旦程序和数据共存于同一片RAM中时,必须使用编译器提供的相关命令将数据区与代码区分开,以防止代码区域的数据被意外覆盖,从而导致系统运行混乱。 Bootloader的升级过程是通过串口或其他通信接口实现的,通常需要设计一种特定的通信协议来确保命令和数据传输的准确性。升级过程应该包括错误检测和校验机制,以确保升级的可靠性。整个升级过程应该是安全的,防止在升级过程中出现中断或断电导致的系统崩溃。 通过上述方法,8051单片机可以实现低成本的在线升级功能。这不仅延长了产品的使用周期,还为设备的远程维护提供了便利。需要注意的是,该方法要求设计者具备对8051单片机硬件特性的深入理解,并能够准确实现Bootloader的编程。此外,在实际应用中还需要充分考虑到系统的安全性和可靠性,确保升级过程的稳定和成功。
2026-01-31 14:20:50 179KB Bootloader 在线升级 外部程序存储器
1
DDR5 JEDEC 官方标准 JESD79-5 DDR5 Spec _wrapper.pdf 的资源文件。 该文件是DDR5的JEDEC规范文档,供相关技术人员和工程师参考使用。 该文档定义了DDR5 SDRAM的规范,包括功能特性、AC和DC特性、封装形式以及引脚/信号分配等内容。文档的主要目的是定义符合JEDEC标准的8Gb至32Gb DDR5 SDRAM设备的最小要求。 该标准基于DDR4标准(JESD79-4),并结合了DDR、DDR2、DDR3和LPDDR4标准(JESD79、JESD79-2、JESD79-3和JESD209-4)的某些方面。
2026-01-05 09:42:01 5.56MB DDR5 高速存储器 SDRAM
1
Liberate MX for SRAM RaK教程 嵌入式静态随机存取存储器(SRAM)实例需要在自由(.lib)文件中捕获的定时、功率、引脚电容和噪声信息,以用于全芯片静态定时分析(STA)流。 随着嵌入式SRAM占用越来越大的芯片面积,准确、高效地生成.lib文件变得非常重要。 这些内存实例的大小和复杂性会使手动方法变得困难和容易出错。 解放MX的架构是为了描述嵌入式内存,如SRAM、ROM、CAM等,以实现定时、功率和噪声。 这是通过在完整的网络列表上运行一个像SpectreXPS这样的FastSPICE模拟器来识别电路活动。 然后,该工具自动为每个需要使用晶体管级遍历的特征的弧划分网络列表,拓扑独立的反馈分析锁存和触发点识别,自动探测,和时钟树识别和传播。 每个弧的分区网表,它包含的晶体管比完整的网表和相关的寄生网络更少,然后可以描述所有的旋转和负载与一个真正的香料模拟器,如幽灵APS。 在自动分区过程中使用动态模拟信息使其成为一种比其他方法更快地准确描述大型宏的首选方法。 基于仿真的方法还可以实现功率表征。 在功率表征期间,设计没有进行分区,因为它需要在整个实例上运行模拟。
2025-12-18 16:51:02 130KB
1
内容概要:本文详细介绍了如何使用Verilog在FPGA上实现W25Q系列(W25Q128/W25Q64/W25Q32/W25Q16)SPI Flash的驱动程序。主要内容涵盖SPI状态机设计、FIFO缓存应用、时钟管理、读ID操作、写使能状态机以及跨时钟域处理等方面的技术细节。文中还提供了丰富的代码片段和实战经验,包括时钟分频、状态机设计、FIFO配置、仿真测试等。此外,针对不同平台(如Cyclone IV和Xilinx Artix-7)的移植注意事项进行了说明,并分享了一些常见的调试技巧和避免的问题。 适合人群:熟悉FPGA开发和Verilog编程的工程师和技术爱好者,尤其是对SPI Flash驱动感兴趣的开发者。 使用场景及目标:适用于需要在FPGA项目中集成W25Q系列SPI Flash的开发者,帮助他们理解和实现高效的SPI Flash驱动程序,提高系统的可靠性和性能。 其他说明:文章不仅提供理论知识,还包括大量实战经验和代码示例,有助于读者更好地掌握相关技术和解决问题。
2025-11-13 14:10:15 351KB FPGA Verilog SPI Flash
1
计算机组成原理静态随机存储器实验 计算机组成原理静态随机存储器实验是计算机组成原理教学实验的重要组成部分,本实验旨在让学生掌握静态随机存储器(SRAM)的工作特性和数据的读写方法。 实验设备: * TDN-CM++计算机组成原理教学实验系统一套 * 导线若干 实验原理: 实验所用的半导体静态存储器电路原理如图 1 所示,实验中的静态存储器由一片 6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。地址灯 ADO~AD7 与地址线相连,显示地址线内容。数据开关经三态门(74LS245)连至数据总线,分时给出地址和数据。 6116 有三个控制线:CE(片选线)、OE(读线)、WE(写线)。当片选有效(CE=0)时,OE=0 时进行读操作,WE=0 时进行写操作。本实验中将 OE 常接地,因此 6116 的引脚信号 WE=1 时进行读操作,WE=0 时进行写操作。在此情况下,要对存储器进行读操作,必须设置控制端 CE=0、WE=0,同时有 T3 脉冲到来,要对存储器进行写操作,必须设置控制端 CE=0、WE=1,同时有 T3 脉冲到来,其读写时间与 T3 脉冲宽度一致。 实验内容: 1. 向存储器中指定的地址单元输入数据,地址先输入 AR 寄存器,在地址灯上显示;再将数据送入总线后,存到指定的存储单元,数据在数据显示灯和数码显示管显示。 2. 从存储器中指定的地址单元读出数据,地址先输入 AR 寄存器,在地址灯显示;读出的数据送入总线,通过数据显示灯和数码显示管显示。 实验步骤: (1)将时序电路模块中的Φ和 H23 排针相连。将时序电路模块中的二进制开关“STOP”设置为“RUN”状态、“STEP”设置为"STEP"状态。 (2)按图 2 连接实验线路,仔细查线无误后接通电源。 (3)向存储器指定的地址送入数据,如:向 00 单元中输入 11,步骤如下: ① 向地址寄存器 AR 中输入地址 00 的流程如下: a. 设置:SW-B=1; b. 从输入开关输入 00000000; c. 打开输入三态门:SW-B=0; d. 将地址打入地址锁存器中:LDAR=1,按 START 发 T3脉冲。 ② 输入要存放的数据 11 的流程如下: a. 设置:SW-B=1; b. 从输入开关输入 00010001; c. 打开输入三态门:SW-B=0; d. 关闭地址寄存器:LDAR=0; e. 将数据写入存储单元:CE=0,WE=1,按 START 发 T3脉冲; f. 输入数据在数码管上显示:LED-B=0,发 W/R 脉冲。 ③ 按照①②的步骤继续向下面的几个地址中输入下述数据: 地址 数据 0112 0203 1304 0415 (4)从存储器指定的地址中读出数据,如从 00 中读出的流程如下: 1. 操作步骤是,设置:a. SW-B=1; b. 禁止存储器读写 CE=1; c. 从输入开关输入 00000000; d. 打开输入三态门:SW-B=0; e. 将地址打入地址锁存器中:LDAR=1,按 START 发 T3脉冲。 静态随机存储器(SRAM)是计算机组成原理教学实验的重要组成部分,本实验旨在让学生掌握静态随机存储器的工作特性和数据的读写方法。通过本实验,学生可以了解静态随机存储器的工作原理和读写过程,从而更好地掌握计算机组成原理的知识。
2025-11-09 10:02:51 80KB
1
包含实验logisim运算器实验的电路
2025-10-29 00:50:17 182KB
1
AT26DF161是一款由Atmel公司生产的串行接口闪存(Serial Flash)存储器,常用于嵌入式系统中的数据存储。这个压缩包文件"AT26DF161.zip"包含了针对该器件的驱动程序源码,特别为IAR开发环境设计,具有高度可移植性,支持读取和写入数据,并且考虑了低功耗操作。通过理解这些标签和文件内容,我们可以深入探讨几个关键知识点: 1. **AT26DF161器件**:这款器件提供了16兆位(2MB)的非易失性存储空间,采用SPI(Serial Peripheral Interface)或QSPI(Quad Serial Peripheral Interface)进行通信。它有快速的数据传输速率、低功耗特性,适合在需要小体积、低成本存储解决方案的嵌入式系统中使用。 2. **驱动程序**:驱动程序是连接硬件设备和操作系统之间的重要桥梁,它允许操作系统和应用程序控制硬件设备。在这个例子中,驱动程序允许IAR开发环境的软件代码与AT26DF161进行通信,执行读写操作和其他必要的功能。 3. **IAR平台**:IAR Embedded Workbench是一款广泛使用的嵌入式系统开发工具链,支持多种微控制器和处理器架构。IAR平台提供的编译器、调试器和集成开发环境(IDE)为开发人员提供了高效、可靠的开发环境,使得在AT26DF161上的软件开发变得更加便捷。 4. **串口驱动**:串行接口是AT26DF161与主机通信的方式,驱动程序必须实现相应的协议(如SPI或QSPI)来正确地控制器件。串行驱动程序处理时序、命令序列以及数据传输,确保数据的准确性和速度。 5. **可移植性**:驱动程序的可移植性意味着它可以应用于不同的平台或操作系统,而不需要大幅度修改。对于AT26DF161驱动,这意味着它可能不仅适用于IAR,还可能被移植到其他开发环境,如Keil MDK或者GCC等。 6. **低功耗处理**:在嵌入式系统中,尤其是电池供电的设备,低功耗是非常重要的。AT26DF161驱动程序会包含特定的电源管理策略,比如在不活动期间关闭器件或进入低功耗模式,以延长设备的运行时间。 7. **源码**:压缩包内的"AT26DF161"文件很可能包含了驱动程序的源代码,这将有助于开发者理解和定制代码,以适应特定项目的需求。源码分析可以帮助学习驱动程序的工作原理,以及如何优化与AT26DF161的交互。 通过这个驱动程序,开发人员可以方便地在IAR环境下控制AT26DF161存储器,实现数据的可靠存储和读取,同时在设计中考虑到低功耗的需求,提升产品的整体性能。对于那些需要在嵌入式系统中使用串行Flash存储器的工程师来说,这是一个宝贵的资源。
2025-08-23 14:51:10 3KB AT26DF161驱动 存储器驱动程序 IAR
1
在嵌入式系统中,与外部存储器进行通信是常见的任务,特别是在资源有限的微控制器如GD32上。GD32系列是基于ARM Cortex-M内核的高性能微控制器,广泛应用于各种电子设备中。本篇文章将深入探讨如何使用GD32通过IIC(Inter-Integrated Circuit)接口来读写外部存储器AT24C32。 AT24C32是一款电可擦可编程只读存储器(EEPROM),它提供了32Kb(4096字节)的存储空间,通常用于存储配置数据、参数或非易失性数据。IIC是一种两线制的串行总线,适合于短距离、低速的通信,非常适合连接这类低功耗、小容量的外设。 我们需要理解GD32的IIC工作原理。GD32中的IIC模块由SCL(Serial Clock Line)和SDA(Serial Data Line)两条线组成,它们负责时钟信号的传输和数据的双向交换。在初始化IIC时,我们需要设置IIC时钟频率、启动和停止条件、地址模式等参数。 在配置GD32的IIC接口后,我们就可以开始与AT24C32通信了。AT24C32的地址由7位固定部分和1位可编程的读写(R/W)位组成。固定部分由制造商分配,而R/W位决定是读操作(0)还是写操作(1)。在发送IIC起始信号后,我们需要连续发送7位设备地址,然后是1位R/W位。 对于写操作,GD32需要先发送设备地址和写操作标志,接着是2字节的内存地址(AT24C32的存储空间分为16个页面,每个页面有128字节),最后是实际要写入的数据。数据写入后,IIC会等待应答信号以确认写操作成功。 读操作则稍有不同,发送设备地址和读操作标志后,GD32会接收从AT24C32返回的内存地址,然后开始读取数据。每次读取可以是一个字节,也可以是连续的多个字节。在读取过程中,GD32需要在适当的时候发送ACK(Acknowledgement)信号表示继续接收,或者NACK(Not Acknowledgement)信号表示结束读取。 为了实现这些功能,你需要编写相应的GD32 IIC驱动程序。这个驱动程序应该包括初始化IIC、发送和接收数据的函数。你可以参考GD32的官方开发库,如`gd32-iic0-at24-c02-master`这个项目,它提供了一个完整的示例来说明如何操作IIC接口和AT24C32。 在实际应用中,还需要注意以下几点: 1. 考虑到IIC总线的冲突问题,如果系统中还有其他设备使用IIC,确保正确设置地址和避免总线竞争。 2. AT24C32的写入操作有最小延迟,通常为5ms,因此写入后不能立即读取,需要等待足够的时间。 3. 为了提高效率,可以采用批量读写的方式,一次性读取或写入多个字节。 4. 在错误处理方面,要检查IIC传输过程中的错误,如超时、数据不匹配等,并采取适当的恢复措施。 通过GD32的IIC接口与AT24C32进行通信是一项基本但重要的技能,掌握这个技术可以帮助你更好地设计和实现嵌入式系统的数据存储功能。结合提供的`gd32-iic0-at24-c02-master`资源,你可以进一步了解并实践这个过程。
2025-07-30 11:22:35 15.42MB
1
内容概要:本文详细介绍了TSMC 28nm工艺库的结构及其各组成部分的功能。TSMC 28nm工艺库包含完整的IO标准、标准单元库(Std)、存储器库(Memory),以及前后端文件,总计容量为160GB。文中分别阐述了IO库、标准单元库和存储器库的具体内容和应用场景,并提供了相应的Verilog代码示例,如IO单元、D触发器和SRAM的实例化代码。此外,还强调了这些组件在实际项目中的重要性和复杂度,帮助读者更好地理解和应用这一庞大的工艺库。 适合人群:从事芯片设计及相关领域的工程师和技术人员,尤其是那些需要深入了解TSMC 28nm工艺库的人群。 使用场景及目标:适用于正在使用或计划使用TSMC 28nm工艺库进行芯片设计的团队和个人。目标是帮助他们掌握库的结构和关键组件的应用方法,从而提高设计效率和质量。 其他说明:尽管TSMC 28nm工艺库文件庞大且复杂,但通过深入理解其各个部分的功能和相互关系,可以有效应对设计挑战并充分利用库的优势。
2025-07-12 20:09:48 1.72MB
1
实验一 存储器的用法 一、实验目的 1.熟悉Proteus仿真软件的用法,掌握常用仪器仪表的使用方法 2.通过仿真,验证存储器的工作原理。 3.设计相应电路检测存储器的基本参数。
2025-06-18 16:49:11 75KB 功能实验
1