内容概要:本文详细介绍了如何使用Verilog在FPGA上实现W25Q系列(W25Q128/W25Q64/W25Q32/W25Q16)SPI Flash的驱动程序。主要内容涵盖SPI状态机设计、FIFO缓存应用、时钟管理、读ID操作、写使能状态机以及跨时钟域处理等方面的技术细节。文中还提供了丰富的代码片段和实战经验,包括时钟分频、状态机设计、FIFO配置、仿真测试等。此外,针对不同平台(如Cyclone IV和Xilinx Artix-7)的移植注意事项进行了说明,并分享了一些常见的调试技巧和避免的问题。 适合人群:熟悉FPGA开发和Verilog编程的工程师和技术爱好者,尤其是对SPI Flash驱动感兴趣的开发者。 使用场景及目标:适用于需要在FPGA项目中集成W25Q系列SPI Flash的开发者,帮助他们理解和实现高效的SPI Flash驱动程序,提高系统的可靠性和性能。 其他说明:文章不仅提供理论知识,还包括大量实战经验和代码示例,有助于读者更好地掌握相关技术和解决问题。
2025-11-13 14:10:15 351KB FPGA Verilog SPI Flash
1
计算机组成原理静态随机存储器实验 计算机组成原理静态随机存储器实验是计算机组成原理教学实验的重要组成部分,本实验旨在让学生掌握静态随机存储器(SRAM)的工作特性和数据的读写方法。 实验设备: * TDN-CM++计算机组成原理教学实验系统一套 * 导线若干 实验原理: 实验所用的半导体静态存储器电路原理如图 1 所示,实验中的静态存储器由一片 6116(2K×8)构成,其数据线接至数据总线,地址线由地址锁存器(74LS273)给出。地址灯 ADO~AD7 与地址线相连,显示地址线内容。数据开关经三态门(74LS245)连至数据总线,分时给出地址和数据。 6116 有三个控制线:CE(片选线)、OE(读线)、WE(写线)。当片选有效(CE=0)时,OE=0 时进行读操作,WE=0 时进行写操作。本实验中将 OE 常接地,因此 6116 的引脚信号 WE=1 时进行读操作,WE=0 时进行写操作。在此情况下,要对存储器进行读操作,必须设置控制端 CE=0、WE=0,同时有 T3 脉冲到来,要对存储器进行写操作,必须设置控制端 CE=0、WE=1,同时有 T3 脉冲到来,其读写时间与 T3 脉冲宽度一致。 实验内容: 1. 向存储器中指定的地址单元输入数据,地址先输入 AR 寄存器,在地址灯上显示;再将数据送入总线后,存到指定的存储单元,数据在数据显示灯和数码显示管显示。 2. 从存储器中指定的地址单元读出数据,地址先输入 AR 寄存器,在地址灯显示;读出的数据送入总线,通过数据显示灯和数码显示管显示。 实验步骤: (1)将时序电路模块中的Φ和 H23 排针相连。将时序电路模块中的二进制开关“STOP”设置为“RUN”状态、“STEP”设置为"STEP"状态。 (2)按图 2 连接实验线路,仔细查线无误后接通电源。 (3)向存储器指定的地址送入数据,如:向 00 单元中输入 11,步骤如下: ① 向地址寄存器 AR 中输入地址 00 的流程如下: a. 设置:SW-B=1; b. 从输入开关输入 00000000; c. 打开输入三态门:SW-B=0; d. 将地址打入地址锁存器中:LDAR=1,按 START 发 T3脉冲。 ② 输入要存放的数据 11 的流程如下: a. 设置:SW-B=1; b. 从输入开关输入 00010001; c. 打开输入三态门:SW-B=0; d. 关闭地址寄存器:LDAR=0; e. 将数据写入存储单元:CE=0,WE=1,按 START 发 T3脉冲; f. 输入数据在数码管上显示:LED-B=0,发 W/R 脉冲。 ③ 按照①②的步骤继续向下面的几个地址中输入下述数据: 地址 数据 0112 0203 1304 0415 (4)从存储器指定的地址中读出数据,如从 00 中读出的流程如下: 1. 操作步骤是,设置:a. SW-B=1; b. 禁止存储器读写 CE=1; c. 从输入开关输入 00000000; d. 打开输入三态门:SW-B=0; e. 将地址打入地址锁存器中:LDAR=1,按 START 发 T3脉冲。 静态随机存储器(SRAM)是计算机组成原理教学实验的重要组成部分,本实验旨在让学生掌握静态随机存储器的工作特性和数据的读写方法。通过本实验,学生可以了解静态随机存储器的工作原理和读写过程,从而更好地掌握计算机组成原理的知识。
2025-11-09 10:02:51 80KB
1
包含实验logisim运算器实验的电路
2025-10-29 00:50:17 182KB
1
AT26DF161是一款由Atmel公司生产的串行接口闪存(Serial Flash)存储器,常用于嵌入式系统中的数据存储。这个压缩包文件"AT26DF161.zip"包含了针对该器件的驱动程序源码,特别为IAR开发环境设计,具有高度可移植性,支持读取和写入数据,并且考虑了低功耗操作。通过理解这些标签和文件内容,我们可以深入探讨几个关键知识点: 1. **AT26DF161器件**:这款器件提供了16兆位(2MB)的非易失性存储空间,采用SPI(Serial Peripheral Interface)或QSPI(Quad Serial Peripheral Interface)进行通信。它有快速的数据传输速率、低功耗特性,适合在需要小体积、低成本存储解决方案的嵌入式系统中使用。 2. **驱动程序**:驱动程序是连接硬件设备和操作系统之间的重要桥梁,它允许操作系统和应用程序控制硬件设备。在这个例子中,驱动程序允许IAR开发环境的软件代码与AT26DF161进行通信,执行读写操作和其他必要的功能。 3. **IAR平台**:IAR Embedded Workbench是一款广泛使用的嵌入式系统开发工具链,支持多种微控制器和处理器架构。IAR平台提供的编译器、调试器和集成开发环境(IDE)为开发人员提供了高效、可靠的开发环境,使得在AT26DF161上的软件开发变得更加便捷。 4. **串口驱动**:串行接口是AT26DF161与主机通信的方式,驱动程序必须实现相应的协议(如SPI或QSPI)来正确地控制器件。串行驱动程序处理时序、命令序列以及数据传输,确保数据的准确性和速度。 5. **可移植性**:驱动程序的可移植性意味着它可以应用于不同的平台或操作系统,而不需要大幅度修改。对于AT26DF161驱动,这意味着它可能不仅适用于IAR,还可能被移植到其他开发环境,如Keil MDK或者GCC等。 6. **低功耗处理**:在嵌入式系统中,尤其是电池供电的设备,低功耗是非常重要的。AT26DF161驱动程序会包含特定的电源管理策略,比如在不活动期间关闭器件或进入低功耗模式,以延长设备的运行时间。 7. **源码**:压缩包内的"AT26DF161"文件很可能包含了驱动程序的源代码,这将有助于开发者理解和定制代码,以适应特定项目的需求。源码分析可以帮助学习驱动程序的工作原理,以及如何优化与AT26DF161的交互。 通过这个驱动程序,开发人员可以方便地在IAR环境下控制AT26DF161存储器,实现数据的可靠存储和读取,同时在设计中考虑到低功耗的需求,提升产品的整体性能。对于那些需要在嵌入式系统中使用串行Flash存储器的工程师来说,这是一个宝贵的资源。
2025-08-23 14:51:10 3KB AT26DF161驱动 存储器驱动程序 IAR
1
在嵌入式系统中,与外部存储器进行通信是常见的任务,特别是在资源有限的微控制器如GD32上。GD32系列是基于ARM Cortex-M内核的高性能微控制器,广泛应用于各种电子设备中。本篇文章将深入探讨如何使用GD32通过IIC(Inter-Integrated Circuit)接口来读写外部存储器AT24C32。 AT24C32是一款电可擦可编程只读存储器(EEPROM),它提供了32Kb(4096字节)的存储空间,通常用于存储配置数据、参数或非易失性数据。IIC是一种两线制的串行总线,适合于短距离、低速的通信,非常适合连接这类低功耗、小容量的外设。 我们需要理解GD32的IIC工作原理。GD32中的IIC模块由SCL(Serial Clock Line)和SDA(Serial Data Line)两条线组成,它们负责时钟信号的传输和数据的双向交换。在初始化IIC时,我们需要设置IIC时钟频率、启动和停止条件、地址模式等参数。 在配置GD32的IIC接口后,我们就可以开始与AT24C32通信了。AT24C32的地址由7位固定部分和1位可编程的读写(R/W)位组成。固定部分由制造商分配,而R/W位决定是读操作(0)还是写操作(1)。在发送IIC起始信号后,我们需要连续发送7位设备地址,然后是1位R/W位。 对于写操作,GD32需要先发送设备地址和写操作标志,接着是2字节的内存地址(AT24C32的存储空间分为16个页面,每个页面有128字节),最后是实际要写入的数据。数据写入后,IIC会等待应答信号以确认写操作成功。 读操作则稍有不同,发送设备地址和读操作标志后,GD32会接收从AT24C32返回的内存地址,然后开始读取数据。每次读取可以是一个字节,也可以是连续的多个字节。在读取过程中,GD32需要在适当的时候发送ACK(Acknowledgement)信号表示继续接收,或者NACK(Not Acknowledgement)信号表示结束读取。 为了实现这些功能,你需要编写相应的GD32 IIC驱动程序。这个驱动程序应该包括初始化IIC、发送和接收数据的函数。你可以参考GD32的官方开发库,如`gd32-iic0-at24-c02-master`这个项目,它提供了一个完整的示例来说明如何操作IIC接口和AT24C32。 在实际应用中,还需要注意以下几点: 1. 考虑到IIC总线的冲突问题,如果系统中还有其他设备使用IIC,确保正确设置地址和避免总线竞争。 2. AT24C32的写入操作有最小延迟,通常为5ms,因此写入后不能立即读取,需要等待足够的时间。 3. 为了提高效率,可以采用批量读写的方式,一次性读取或写入多个字节。 4. 在错误处理方面,要检查IIC传输过程中的错误,如超时、数据不匹配等,并采取适当的恢复措施。 通过GD32的IIC接口与AT24C32进行通信是一项基本但重要的技能,掌握这个技术可以帮助你更好地设计和实现嵌入式系统的数据存储功能。结合提供的`gd32-iic0-at24-c02-master`资源,你可以进一步了解并实践这个过程。
2025-07-30 11:22:35 15.42MB
1
内容概要:本文详细介绍了TSMC 28nm工艺库的结构及其各组成部分的功能。TSMC 28nm工艺库包含完整的IO标准、标准单元库(Std)、存储器库(Memory),以及前后端文件,总计容量为160GB。文中分别阐述了IO库、标准单元库和存储器库的具体内容和应用场景,并提供了相应的Verilog代码示例,如IO单元、D触发器和SRAM的实例化代码。此外,还强调了这些组件在实际项目中的重要性和复杂度,帮助读者更好地理解和应用这一庞大的工艺库。 适合人群:从事芯片设计及相关领域的工程师和技术人员,尤其是那些需要深入了解TSMC 28nm工艺库的人群。 使用场景及目标:适用于正在使用或计划使用TSMC 28nm工艺库进行芯片设计的团队和个人。目标是帮助他们掌握库的结构和关键组件的应用方法,从而提高设计效率和质量。 其他说明:尽管TSMC 28nm工艺库文件庞大且复杂,但通过深入理解其各个部分的功能和相互关系,可以有效应对设计挑战并充分利用库的优势。
2025-07-12 20:09:48 1.72MB
1
实验一 存储器的用法 一、实验目的 1.熟悉Proteus仿真软件的用法,掌握常用仪器仪表的使用方法 2.通过仿真,验证存储器的工作原理。 3.设计相应电路检测存储器的基本参数。
2025-06-18 16:49:11 75KB 功能实验
1
MC9S12系列单片机控制访问FM24C02存储器,控制2048位的串行电可擦除只读存储器
2025-06-10 15:23:48 6KB MC9S12 FM24C02
1
EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种可编程、可擦除的非易失性存储器,广泛应用于嵌入式系统中,用于保存配置信息、用户数据等。BL24C16是一款容量为16K位(2KB)的串行EEPROM芯片,它支持I²C(Inter-Integrated Circuit)接口,这种接口在低功耗、小型化应用中非常常见。 I²C总线是一种多主控、两线制的通信协议,由飞利浦(现NXP)公司开发。它只需要两条信号线——SDA(Serial Data Line)和SCL(Serial Clock Line)即可实现设备间的通信。在这个例子中,我们使用C语言通过GPIO(General Purpose Input/Output)模拟I²C协议来与BL24C16进行通信,这是一种常见的实践,特别是在没有硬件I²C控制器的微控制器上。 C语言是编写嵌入式系统程序的常用语言,因为它简洁、高效并且跨平台。在BL24C16的使用例程中,你需要理解以下几个关键知识点: 1. **I²C通信协议**:理解I²C的起始信号、停止信号、数据传输格式(7位地址+1位读写位+8位数据)以及ACK(Acknowledgement)机制。 2. **GPIO模拟I²C**:通过编程控制GPIO引脚的电平变化模拟SDA和SCL线上的信号,包括高低电平转换、边沿检测等。 3. **BL24C16芯片特性**:了解BL24C16的地址空间、页面大小、读写操作时序,以及如何设置和读取数据。 4. **C语言编程**:掌握基本的C语言语法,如变量声明、函数定义、结构体、位操作等,这些是实现I²C通信和与BL24C16交互的基础。 5. **错误处理**:在实际应用中,必须考虑通信错误的可能性,如超时、数据校验失败等,并编写相应的错误处理代码。 6. **硬件连接**:明确微控制器与BL24C16之间的物理连接,包括GPIO引脚的分配,确保正确地连接SDA和SCL线。 7. **软件设计**:编写发送和接收函数,以执行读写操作。这可能包括初始化函数、发送地址和命令、读取或写入数据等。 8. **调试技巧**:学会使用逻辑分析仪或示波器观察SDA和SCL线的实际信号,以验证软件模拟的I²C通信是否正确。 9. **库函数使用**:如果可用,可以使用已有的I²C库,如AVR、ARM等微控制器平台上的库,它们提供了更高级别的接口,简化了与I²C设备的交互。 10. **系统级考虑**:考虑到嵌入式系统中的资源限制,如内存、CPU速度等,优化代码以提高效率。 通过以上知识点的学习和实践,你可以成功地使用C语言和IO模拟I²C来控制BL24C16芯片,实现数据的存储和读取。在实际应用中,你可以根据需要扩展这个例程,例如增加错误处理机制、优化通信效率或与其他设备的协同工作。
2024-08-01 11:07:45 6KB BL24C16 IIC IO
1
实验一 运算器组成实验 1.算术逻辑运算实验 2.带进位算术运算实验 3.移位运算实验 实验二 存储器实验 1.FPGA中ROM配置与读出实验 2.LPM_RAM_DP双端口RAM实验 3.LPM_FIFO存储器实验 4.FPGA与外部RAM接口实验 5.FPGA与外部EEPROM接口实验 实验三 微控制器实验 1.时序电路实验 2.程序计数器PC和地址寄存器AR 3.微控制器组成实验 实验四 总线控制实验 实验五 基本模型机设计与实现 实验六 带移位运算的模型机的设计与实现 实验七 复杂模型机的设计与实现 实验八 8051通用单片机IP核应用实验 实验九 用嵌入式逻辑分析仪实时测试FPGA中CPU或单片机 VHDL硬件描述语言/MaxplusII教学参考推荐
2024-06-29 11:28:03 353KB
1