Spark 初级编程实践 Spark 是一个大数据处理的开源 cluster computing 框架,具有高效、灵活、可扩展等特点。本实验报告旨在通过 Spark 初级编程实践,掌握 Spark 的基本使用和编程方法。 一、安装 Hadoop 和 Spark 在本机 Windows 10 上安装 Oracle VM VirtualBox 虚拟机,安装 CentOS 7 操作系统,并配置 Hadoop 3.3 环境。由于 Hadoop 版本为 3.3,所以在官网选择支持 3.3 的 Spark 安装包,解压安装包到指定文件夹,配置 spark-env.sh 文件,启动 Spark 成功。 二、Spark 读取文件系统的数据 Spark 可以读取 Linux 系统本地文件和 HDFS 系统文件。在 spark-shell 中读取 Linux 系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数。在 spark-shell 中读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数。编写独立应用程序(使用 Scala 语言),读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数。使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 三、编写独立应用程序实现数据去重 编写 Spark 独立应用程序,对两个输入文件 A 和 B 进行合并,并剔除其中重复的内容,得到一个新文件 C。使用 Scala 语言编写程序,并使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 四、编写独立应用程序实现求平均值问题 编写 Spark 独立应用程序,求出所有学生的平均成绩,并输出到一个新文件中。使用 Scala 语言编写程序,并使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 五、问题解决 在实验过程中,遇到了三个问题。问题一是运行 start-all 命令时 Spark 报错说缺少依赖,解决方法是下载安装包时选择正确的版本。问题二是在 etc/profile 中更改完环境后,Source 命令刷新文件仍然出现路径配置错误,解决方法是在同一个窗口 source 一下成功启动。问题三是在用 sbt 编译的过程中报错,解决方法是将编译的 sbt 文件配置改为启动 spark-shell 中现实的 Scala 版本号。 本实验报告通过对 Spark 的基本使用和编程方法的实践,掌握了 Spark 的基本使用和编程方法,并解决了实验过程中的问题。
2025-06-08 15:55:11 913KB spark 编程语言
1
一.实验内容 MapReduce编程实践: 使用MapReduce实现多个文本文件中WordCount词频统计功能,实验编写Map处理逻辑、编写Reduce处理逻辑、编写main方法。 二.实验目的 1、通过实验掌握基本的MapReduce编程方法。 2、实现统计HDFS系统中多个文本文件中的单词出现频率。 三.实验过程截图及说明 1、在本地创建多个文本文件并上传到Hadoop: (1)创建本地存放文件的文件夹: (2)使用vim命令向文件里添加内容: (3)在Hadoop里创建存放文件的目录: (4)将本地的3个文件上传到Hadoop上: 2、编写java代码来操作读取文件并统计: (1)启动idea: (2)目录结构: (3)编写log4j.properties文件: (4)引入需要用到的依赖: 。。。。。。 ### 大数据实验四-MapReduce编程实践 #### 一、实验内容与目的 ##### 实验内容概述 本次实验的主要内容是使用MapReduce框架来实现WordCount词频统计功能,即统计HDFS(Hadoop Distributed File System)系统中多个文本文件内的单词出现频率。具体步骤包括: 1. **编写Map处理逻辑**:设计一个Map函数,负责读取输入文件中的每一行数据,将其拆分为单词,并为每个单词分配一个初始计数值(通常是1)。 2. **编写Reduce处理逻辑**:设计一个Reduce函数,对中间结果进行汇总,将所有相同单词的计数值相加,得到该单词在整个文件集合中的总出现次数。 3. **编写main方法**:设置MapReduce作业的配置信息,如指定输入输出路径、Mapper和Reducer类等,并启动作业执行。 ##### 实验目的 1. **掌握基本的MapReduce编程方法**:理解MapReduce的基本原理和编程流程,学会如何使用Java编写MapReduce程序。 2. **实现统计HDFS系统中多个文本文件中的单词出现频率**:通过实际操作,体验MapReduce在处理大数据集时的高效性。 #### 二、实验过程详解 ##### 1. 在本地创建多个文本文件并上传到Hadoop - **创建本地存放文件的文件夹**:首先在本地机器上创建一个文件夹用于存放即将上传至Hadoop的文本文件。 - **使用vim命令向文件里添加内容**:使用文本编辑器或Linux下的`vim`命令创建多个文本文件(例如words1.txt、words2.txt、words3.txt),并在这些文件中写入一些测试数据。 - **在Hadoop里创建存放文件的目录**:登录到Hadoop集群,使用`hadoop fs -mkdir`命令在HDFS上创建一个新的目录来存放即将上传的文件。 - **将本地的3个文件上传到Hadoop上**:使用`hadoop fs -put`命令将本地的测试文件上传到HDFS上指定的目录中。 ##### 2. 编写Java代码来操作读取文件并统计 - **启动IDEA**:打开IntelliJ IDEA或其他集成开发环境。 - **目录结构**:创建项目目录结构,通常包含src/main/java、src/main/resources等目录。 - **编写log4j.properties文件**:在资源目录下创建log4j配置文件,用于日志管理。 - **引入需要用到的依赖**:在项目的build.gradle或pom.xml文件中添加必要的Hadoop和MapReduce依赖。 - **编写Mapper处理逻辑**:定义一个Mapper类,继承自`org.apache.hadoop.mapreduce.Mapper`,重写`map()`方法,用于处理输入的文本数据并输出键值对(k表示单词,v表示计数值)。 - **编写Reducer处理逻辑**:定义一个Reducer类,继承自`org.apache.hadoop.mapreduce.Reducer`,重写`reduce()`方法,用于对相同键(单词)的所有值(计数值)进行汇总。 - **编写main函数驱动模块**:创建一个Driver类,用于配置MapReduce作业参数,并启动作业。 - **运行main函数方法**:在IDEA中运行Driver类的main方法,提交作业至Hadoop集群执行。 - **运行成功后查看输出文件内容**:作业完成后,在HDFS上指定的输出目录中查看统计结果。 #### 三、实验总结及心得体会 **实验总结**:通过本次实验,不仅掌握了MapReduce的基本编程方法,还了解了其在大数据处理领域的重要作用。MapReduce能够高效地处理大量数据,极大地提升了数据分析的速度和准确性。 **心得体会**: 1. **理解MapReduce的工作原理**:深入学习MapReduce的工作机制,理解其分布式计算的优势。 2. **实际编程经验积累**:通过编写MapReduce程序,积累了实际编程经验,熟悉了Hadoop和MapReduce的API。 3. **分布式计算的认识**:认识到分布式计算的局限性与优势,在实际应用中需要权衡数据规模和计算需求。 4. **Hadoop框架的理解**:对Hadoop框架有了更全面的认识,为进一步学习Hadoop生态系统打下基础。 5. **编程能力提升**:通过不断调试和优化代码,提高了编程技能和解决问题的能力。 本次实验不仅是一次技术上的尝试,更是对未来大数据处理技术和分布式计算领域的一次深入探索。
2025-05-28 16:28:20 461KB hadoop mapreduce 编程语言
1
大数据技术及应用实验报告的内容涵盖了一系列涉及Hadoop的安装、部署和管理的重要知识点。Hadoop的安装方法包括单点部署和集群部署两种方式,其中单点部署是必做的,而集群部署则为选做。在安装过程中,学生需要掌握配置SSH免密码登录、安装JDK和Hadoop、修改环境变量以及配置相关配置文件如hadoop-env.sh、core-site.xml、hdfs-site.xml、mapred-site.xml和yarn-site.xml。此外,还需进行HDFS的格式化、启动和验证,以及MapReduce和YARN的启动。这些步骤是实现Hadoop环境配置和初步了解其运行原理的关键。 在Hadoop安装部署和管理实验中,学生通过截图和问题回答的方式记录了实验操作的每一个步骤,这包括了环境准备、安装过程、配置修改、环境变量设置、HDFS格式化、启动和运行状态验证等。这些操作不仅加深了学生对Hadoop系统结构和运行机制的理解,而且培养了他们严谨认真和有耐心的实验态度。 接着,在HDFS的管理和使用实验中,学生学习了如何使用HDFS Shell命令来管理文件系统,包括创建文件夹、上传、复制、下载文件和删除文件等操作。同时,学生还通过HDFS API操作进行了文件的上传和读取等编程实践,从而更深入地理解HDFS的运行机制和编程接口。 整体来看,这些实验报告所涉及的知识点包括了Hadoop集群的搭建、HDFS文件系统的基本操作以及如何使用Hadoop的相关组件进行大数据处理。这些知识和技能对于大数据技术的学习者来说是基础且核心的内容,它们是学生将来在数据分析、存储和处理方面工作的基础。通过对这些实验报告的分析和学习,学生不仅能够掌握Hadoop的安装和使用技巧,还能够更好地理解大数据存储和处理的基本原理。
2025-05-28 16:22:48 5.85MB 大数据实验报告 重庆邮电大学
1
一.实验内容 Hadoop安装使用: 1)在PC机上以伪分布式模式安装Hadoop; 2)访问Web界面查看Hadoop信息。 二.实验目的 1、熟悉Hadoop的安装流程。 2、熟悉Hadoop访问Web界等基本操作。 ### Hadoop安装及使用知识点详解 #### 一、实验内容概览 本次实验的主要目标是掌握Hadoop在PC机上的安装及使用方法,具体包括: 1. **伪分布式模式下的Hadoop安装**:通过在一台PC机上模拟多台机器的行为来搭建Hadoop集群。 2. **Web界面访问**:安装完成后,通过Web界面监控和管理Hadoop集群的状态。 #### 二、实验目的 1. **熟悉Hadoop安装流程**:从环境准备、软件安装到配置调试,全面了解Hadoop部署的全过程。 2. **掌握基本操作**:学会如何通过Web界面等工具进行集群状态监控和管理。 #### 三、实验过程知识点详解 1. **SSH无密码登录配置**: - **生成SSH密钥对**:使用`ssh-keygen -t rsa`命令生成一对RSA类型的公钥和私钥。这一步骤是为了后续能在没有密码的情况下实现SSH登录。 - **添加公钥至authorized_keys文件**:将生成的公钥文件内容追加到`.ssh/authorized_keys`文件中,实现SSH免密码登录。 2. **Java环境配置**: - **JDK安装**:首先下载JDK压缩包,并将其解压到指定目录。 - **配置环境变量**:通过编辑`~/.bashrc`文件,设置JAVA_HOME等环境变量,并使用`source ~/.bashrc`命令使更改立即生效。 3. **Hadoop的安装与配置**: - **Hadoop安装**:从官方网站下载Hadoop压缩包,并将其解压到`/usr/local`目录下。 - **配置核心文件**:编辑`core-site.xml`、`hdfs-site.xml`、`mapred-site.xml`和`yarn-site.xml`四个配置文件,设置Hadoop的关键参数。 - **格式化HDFS**:使用`hdfs namenode -format`命令格式化Hadoop的NameNode,这是启动集群前的必要步骤。 - **启动Hadoop集群**:通过执行`start-dfs.sh`和`start-yarn.sh`脚本启动Hadoop服务,可通过`jps`命令查看是否成功启动NameNode、DataNode以及SecondaryNameNode进程。 4. **Web界面访问**: - **查看集群状态**:通过浏览器访问`http://localhost:9870`来查看Hadoop集群的Web界面,可以监控集群的状态和性能指标。 #### 四、实验总结及心得体会 **实验总结**: - **虚拟机搭建**:使用virtualBox创建多个虚拟机,模拟多台服务器的环境。 - **JDK安装**:在每个虚拟机上安装JDK,为Hadoop提供必要的运行环境。 - **Hadoop配置**:通过编辑配置文件,完成Hadoop集群的部署和启动。 - **功能测试**:通过简单的程序验证集群的功能性,确认数据能在各节点间正常传输和处理。 **心得体会**: - **虚拟机技术**:熟练掌握了virtualBox等虚拟机软件的使用,提高了在虚拟环境中搭建分布式系统的技能。 - **Hadoop安装过程**:深入了解了Hadoop的安装流程,包括在不同操作系统上的安装配置技巧。 - **分布式系统架构**:通过实验加深了对Hadoop分布式平台架构和组件的理解,为后续大数据项目的实施积累了宝贵经验。 - **Linux技能提升**:在实验过程中,通过编写和执行Shell脚本来管理集群,提高了Linux命令行操作的能力。 - **大数据处理**:对大数据处理有了更深刻的认识,了解了Hadoop在大数据处理中的作用及其发展前景。 通过本次实验,不仅提升了个人技能和理论知识,也为未来的职业发展打下了坚实的基础。
2025-04-22 00:11:37 497KB hadoop
1
一.实验内容 HBase编程实践: 1)在Hadoop基础上安装HBase; 2)使用Shell命令(create:创建表 、list:列出HBase中所有的表信息、put:向表、行、列指定的单元格添加数据等);使用HBase常用Java API创建表、插入数据、浏览数据。 二.实验目的 1、理解HBase在Hadoop体系结构中的角色。 2、熟练使用HBase操作常用的Shell命令。 3、熟悉HBase操作常用的JavaAPI。 三.实验过程截图及说明 1、安装HBase (1)解压HBase文件到/usr/local目录下,并将目录改名为hbase: ### HBase编程实践知识点 #### 一、HBase在Hadoop体系结构中的角色 HBase是一种分布式的、可扩展的大规模数据存储系统,它构建在Hadoop之上,特别是在Hadoop Distributed File System (HDFS)之上。HBase为结构化数据提供了一个高性能、可伸缩的存储解决方案。它支持海量数据的随机读写操作,并且能够处理PB级别的数据量。HBase的核心设计原则之一是提供高吞吐量的数据访问能力,使其特别适合于实时数据查询场景。 1. **角色定位**: - **数据库功能**:HBase虽然建立在HDFS之上,但它更像是一个数据库而非文件系统,它支持表的概念,允许用户进行行级别的读写操作。 - **数据模型**:HBase采用了列族的数据模型,这使得它可以高效地存储和检索大规模稀疏数据集。 - **高可用性和容错性**:HBase具有自动的故障恢复机制,可以在节点失败时继续提供服务。 - **实时读写**:HBase支持快速的数据读取和写入操作,这对于需要实时响应的应用场景非常有用。 #### 二、HBase的Shell命令 HBase的Shell命令是进行表管理、数据插入、查询等操作的一种简单方式。以下是一些常用的Shell命令: 1. **创建表**: - `create 'tablename', 'columnfamily'`:用于创建一个新的表,其中`tablename`是表的名字,`columnfamily`是列族的名字。 - 示例:`create 'student', 'info'`,这会创建一个名为`student`的表,其中包含一个名为`info`的列族。 2. **列出所有表**: - `list`:显示HBase中当前存在的所有表的信息。 - 示例:`list`。 3. **插入数据**: - `put 'tablename', 'rowkey', 'columnfamily:qualifier', 'value'`:将数据插入指定的表、行、列指定的位置。 - 示例:`put 'student', '95001', 'info:Sname', 'YangJile'`,这条命令会在`student`表的行键为`95001`的行中,插入一个名为`Sname`的列,并设置其值为`YangJile`。 4. **获取数据**: - `get 'tablename', 'rowkey'`:用于查看表中特定行的数据。 - 示例:`get 'student', '95001'`。 5. **扫描数据**: - `scan 'tablename'`:用于查看表中的所有数据。 - 示例:`scan 'student'`。 6. **删除表**: - `disable 'tablename'`:先使表不可用。 - `drop 'tablename'`:删除表。 - 示例:`disable 'student'`,`drop 'student'`。 #### 三、HBase的Java API 除了Shell命令之外,HBase还提供了丰富的Java API,用于更高级的编程操作。以下是一些关键的Java API概念和使用方法: 1. **创建连接**: - `ConnectionFactory.createConnection(Configuration conf)`:创建一个与HBase集群的连接。 - 示例:`Configuration conf = HBaseConfiguration.create(); Connection conn = ConnectionFactory.createConnection(conf);` 2. **创建表**: - `TableDescriptorBuilder`:用于构建表的元数据描述。 - `Admin.createTable(TableDescriptor)`:通过管理员对象创建表。 - 示例:使用`TableDescriptorBuilder`创建表描述器,并通过`Admin`对象创建表。 3. **插入数据**: - `Put`:用于构建一个将被插入到表中的单元格。 - `Table.put(Put put)`:将构建好的`Put`对象插入到表中。 - 示例:创建`Put`对象并将其插入到表中。 4. **获取数据**: - `Get`:用于构建查询条件。 - `Table.get(Get get)`:根据构建好的`Get`对象查询数据。 - 示例:创建`Get`对象并从表中获取数据。 5. **扫描数据**: - `Scan`:用于构建扫描条件。 - `Table.get(Scan scan)`:根据构建好的`Scan`对象查询数据。 - 示例:创建`Scan`对象并从表中获取数据。 6. **关闭连接**: - `conn.close()`:关闭与HBase集群的连接。 - 示例:`conn.close();`。 #### 四、实验总结与心得体会 通过本次实验,我对HBase的安装配置有了深入的理解,并掌握了如何使用Shell命令和Java API来进行表的操作。HBase的强大之处在于它能够处理大规模的数据,并且提供了高效的数据读写能力。在未来的工作中,我会更加熟练地使用HBase来解决实际问题,并探索更多关于大数据处理的技术栈。
2025-04-02 15:02:08 742KB hadoop hbase 编程语言
1
河南大学软件学院大数据实验汇总(实验1-5); 实验截图无学号水印,方便直接压缩上交;
2024-03-06 17:34:32 1.86MB 河南大学 软件学院
1
大数据实验报告,1-8合集 熟悉常用的HBase操作 熟悉常用的mongoDB数据库操作等等 大数据实验报告(实验一到八) 实验一: 熟悉常用的Linux操作和Hadoop操作 实验二: 熟悉常用的HDFS操作 实验三: 熟悉常用的HBase操作 实验四: 熟悉常用的mongoDB数据库操作 实验五: MapReduce初级编程实践 实验六: 熟悉Hive的基本操作 实验七: Spark初级编程实践 实验八: Flink初级编程实践
2023-11-29 21:11:44 6.57MB hbase mongodb
1
cuit大数据实验3 111111111111111
2022-12-26 19:27:07 623KB 作业
1
实验内容与完成情况: 1. 使用IntelliJ IDEA工具开发WordCount程序 在Linux操作系统中安装IntelliJ IDEA,然后使用IntelliJ IDEA工具开发WordCount程序,并打包成JAR包,提交到Flink中运行。 安装Flink并启动: 安装maven: 使用IntelliJ IDEA写java: 使用maven打包JAR包 运行JAR包结果: 2. 数据流词频统计 使用Linux操作系统自带的NC程序模拟生成数据流,不断产生单词并发送出去。编写Fink程序对NC程序发来的单词进行实时处理,计算词频,并输出词频统计结果。要求首先在IntelliJ IDEA中开发和调试程序,然后打包成JAR包部署到Flink中运行。 使用IntelliJ IDEA写java: 运行NC并输入数据: 运行JAR包:
2022-06-29 09:11:35 2.46MB 大数据实验报告 hadoop Flink 大数据
大数据实验报告 大数据实验报告全文共17页,当前为第1页。大数据实验报告全文共17页,当前为第1页。 大数据实验报告全文共17页,当前为第1页。 大数据实验报告全文共17页,当前为第1页。 课 程 实 验 报 告 专 业 年 级 14级软件工程 课 程 名 称 大数据技术原理与应用 指 导 教 师 李均涛 学 生 姓 名 吴勇 学 号 20142205042026 实 验 日 期 2017.05.04 实 验 地 点 笃行楼B栋301 实 验 成 绩 教务处制 2017年03月09日 大数据实验报告全文共17页,当前为第2页。大数据实验报告全文共17页,当前为第2页。实验项目 大数据实验报告全文共17页,当前为第2页。 大数据实验报告全文共17页,当前为第2页。 名称 Liunx基本操作 实验 目的及要求 了解Liunx操作系统发展历史。 学习Liunx操作系统基本概念及操作。 学习Liunx操作系统用户及文件权限管理。 Linux 目录结构及文件基本操作。 实验 内容 1.实验楼环境介绍,常用 Shell 命令及快捷键,Linux 使用小技巧。 2.Linux 中创建、删除用户,及
2022-06-21 22:03:58 11.42MB 文档资料