摘要为进一步提高多聚焦图像的融合质量提出一种基于监督学习的全卷积神经网络多聚焦图像融合算法该算法旨在运用神经网络学习源图像不同聚焦区域的互补关系即选择源图像中不
2022-11-17 14:33:14 13.23MB 图像处理 监督学习 全卷积 多聚焦图
1
针对多聚焦图像融合中目标物边缘处产生虚影的问题,提出一种基于引导滤波与改进脉冲耦合神经网络(PCNN)的多聚焦图像融合算法。该算法利用引导滤波器对源图像进行多尺度边缘保持分解,对分解得到的基本图像和细节图像采用不同的引导滤波加权融合策略进行初步融合;将初步融合图作为外部输入激励刺激改进的PCNN模型;根据融合权重图对多幅源图像进行融合,获得最终的融合图像。实验结果表明,与传统融合算法相比,本文方法较好地保留了源图像的边缘、区域边界以及纹理等细节信息,避免了目标物边缘处产生虚影,提高了融合图像的质量。
1