内容概要:本文介绍了一种结合正余弦优化(SCA)算法与匈牙利任务分配策略的多智能体路径规划及动态避障方法,并提供了完整的MATLAB代码实现。该方法不仅能够进行全局路径规划,还能在局部路径规划中实现高效的动态避障。文中详细解释了SCA算法的速度更新公式及其在避障中的应用,以及匈牙利算法在任务分配中的具体实现。此外,文章展示了如何利用MATLAB的animatedline函数实现路径的动态显示,并通过实验验证了该方法在仓库AGV调度中的优越性能。 适合人群:对多智能体系统、路径规划、动态避障感兴趣的科研人员、研究生及工程师。 使用场景及目标:①研究和开发多智能体系统的路径规划算法;②解决多机器人在复杂环境中的动态避障问题;③提高多机器人协作效率,减少路径交叉率。 其他说明:代码已开源,适合希望深入理解并改进多智能体路径规划算法的研究者。
2025-11-26 13:26:36 313KB 多智能体系统 MATLAB
1
多智能体系统(MAS)中领导跟随一致性问题的研究成果。针对通信时变时延和扰动带来的挑战,提出了一种基于事件触发机制的方法,并通过仿真实验展示了其有效性。文中首先概述了多智能体系统的概念及其优势,接着深入讨论了领导跟随一致性问题的具体挑战,特别是通信时变时延和扰动对系统性能的影响。随后,提出了具有通信时变时延和扰动的事件触发机制,该机制通过减少不必要的通信次数并动态调整通信策略,提高了系统的适应性和鲁棒性。最后,通过具体的仿真实验验证了这一机制的有效性,实验结果表明,系统在引入该机制后,领导跟随一致性显著提高,智能体间的通信更加高效,协同工作能力得到增强。 适合人群:从事多智能体系统研究的科研人员、高校师生以及相关领域的工程师。 使用场景及目标:适用于需要解决多智能体系统中领导跟随一致性问题的实际应用场景,如无人机编队飞行、自动驾驶车队管理等。目标是提高系统的稳定性和协同效率,确保在复杂环境下仍能保持高效的领导跟随一致性。 其他说明:文中提供的代码片段展示了如何实现智能体类和事件触发类的基本结构,为后续研究提供了参考。
2025-10-31 16:49:42 784KB
1
本文研究了异步离散时间多智能体系统的约束共识问题,其中每个智能体在达成共识时都需要位于封闭的凸约束集内。 假定通信图是有向的,不平衡的,动态变化的。 另外,假定它们的并集图在有限长度的某些间隔之间是牢固连接的。 为了处理代理之间的异步通信,可以通过添加新的代理将原始异步系统等效地转换为同步系统。 通过利用凸集上的投影特性,可以估算从新构建的系统中的智能体状态到所有智能体约束集的交集的距离。 基于此估计,通过显示新构建系统的线性部分收敛并且非线性部分随时间消失,证明了原始系统已达成共识。 最后,提供了两个数值示例来说明理论结果的有效性。
2025-10-24 09:47:53 846KB Constrained consensus; Multi-agent system;
1
本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。书中阐述了如何通过分布式协议确保所有智能体达成共识或同步,涵盖了一阶和二阶系统、队形控制及图拓ology的影响。此外,书中还探讨了最优控制和自适应控制在图上的实现,强调了局部和全局最优性之间的关系及其在实际应用中的挑战。通过实例和理论分析,本书为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 多智能体系统的协同控制与优化设计是近年来系统控制领域的热点问题。智能体系统是由多个智能体组成的一个群体,每个智能体拥有一定程度的自治能力,通过相互之间的协调与合作来完成复杂的任务。在这一领域中,协同控制主要是指智能体之间如何通过分布式协议达成一致的行为,即达成共识或同步。优化设计则涉及如何构建最优的控制策略,使得系统的整体性能达到最佳。 本书深入探讨了多智能体系统在通信网络上的协同控制问题,重点介绍了最优和自适应设计方法。所谓最优设计,即是在给定性能指标下,寻找可以使系统性能最优化的控制策略。而自适应设计则是指系统能够在变化的环境或参数下,自动调整自身控制策略,以适应外部变化。 书中详细阐述了分布式协议如何确保所有智能体达成共识或同步,并且覆盖了不同类型的系统模型,例如一阶系统和二阶系统。队形控制和图拓扑的影响也是讨论的关键内容,因为它们直接关系到智能体如何在空间中有效地组织和协同工作。 此外,最优控制和自适应控制在图上的实现也被细致探讨。这涉及到如何将最优控制和自适应控制理论应用到多智能体系统的网络结构上,以及这些控制策略如何在局部和全局水平上影响系统的最优性。这些理论与实际应用中的挑战紧密相连,书中通过实例和理论分析,为读者提供了理解和解决多智能体系统协同控制问题的全面指南。 本书的作者们包括弗兰克·L·刘易斯(Frank L. Lewis)、张红伟(Hongwei Zhang)、克里斯蒂安·亨格斯特-莫夫里克(Kristian Hengster-Movric)和阿比吉特·达斯(Abhijit Das)。他们分别来自德克萨斯大学阿灵顿分校UTA研究所和西南交通大学电气工程学院、以及Danfoss Power Solutions(US)公司。该书由Springer出版,是通讯与控制工程系列的一部分。 在版权方面,本书受到国际版权法律的保护。出版社保留了包括翻译权、翻印权、插图使用、朗诵权、广播权、微缩复制或任何其他物理方式复制、传输或信息存储和检索、电子改编、计算机软件,或通过现在已知或今后开发出的类似或不相似方法的权利。但是,为了评论、学术分析或专门为在计算机系统中执行和使用的材料,可以简短摘录。 本书对于希望深入了解多智能体系统协同控制和优化设计的读者来说,是极具价值的参考资料。它不仅涵盖了理论的全面讨论,也提供了实际应用的案例分析,能够帮助读者在工程实践与理论研究中找到平衡点。
2025-10-22 12:20:33 21.49MB multi-agent systems control theory
1
本书系统介绍多智能体系统的控制理论与Python仿真,涵盖一致性、覆盖与编队控制等核心内容,并延伸至分布式优化与病毒传播建模。适合控制、计算机与工程领域研究生及研究人员,兼具理论深度与实践代码,助力快速掌握协同控制前沿。 多智能体系统由多个自主个体组成,这些个体能够协作执行复杂任务,如搜索、监视、探索和导航等。在多智能体系统中,个体间需要通过通信、感知和决策来协同工作,这要求每个智能体具有一定的智能水平和通信能力。多智能体系统的控制理论研究如何设计和分析智能体间的交互机制,以及如何通过这些机制实现高效的任务执行。 一致性问题关注的是系统中所有智能体能否达成并保持某种共识状态。在多智能体系统中,一致性算法使得一组初始状态不同的智能体能够通过局部信息交换和一定策略,最终在状态上达成一致。一致性控制广泛应用于机器人编队控制、分布式计算、传感器网络和无人机群控制等领域。 覆盖与编队控制是多智能体系统中的另一个重要研究方向。覆盖控制主要研究智能体如何分布于某个区域内以执行覆盖任务,例如环境监测、搜索救援等。而编队控制则关注智能体如何协同移动以形成特定的形状或队形。这些控制策略在多机器人系统、卫星编队控制、无人航空器编队飞行等领域具有重要应用。 分布式优化处理的是如何在多智能体系统中分散地解决优化问题。该问题要求智能体能够在缺乏全局信息的情况下,通过相互交流和协作,达成全局最优解或近似最优解。分布式优化方法在电力系统、交通管理、无线网络等领域都有实际应用。 病毒传播建模是研究传染病在人口群体中传播的数学模型,通过多智能体系统模型可以模拟不同个体间的相互作用及其对病毒传播的影响。这类模型有助于公共卫生政策制定者理解和预测疾病爆发趋势,从而采取有效的防控措施。 Python作为一种编程语言,在多智能体系统的仿真研究中具有重要作用。它的易学易用、丰富的库支持以及强大的数据处理能力,使得研究人员能够快速搭建仿真平台并实现复杂的控制策略。Python在多智能体仿真中广泛应用于算法的快速原型开发、结果可视化以及数据分析等环节。 本书提供的内容不仅深入浅出地介绍了多智能体系统的控制理论,还通过Python仿真实践,帮助读者更好地理解理论知识并掌握其应用。书中包含大量理论分析和代码实例,通过这些内容,读者可以学习到如何使用Python进行多智能体系统的仿真,进而进行分布式优化和病毒传播建模等复杂任务。 本书适合控制、计算机与工程领域的研究生及研究人员阅读。该书不仅提供了多智能体系统的基础知识,还包括了利用Python进行模拟实验的方法。书中内容覆盖了从基础理论到实际应用的多个方面,使读者能够在理解多智能体系统控制的基础上,结合编程实践,深入研究和开发新的控制策略。 书中的章节设计和内容编排旨在帮助学生和教师更有效地利用教材。教材系列注重理论与应用的结合,不仅提供了理论知识,还包含了丰富的辅助教学材料。这些材料通过网络获取,覆盖了从仿真文件到课堂投影的pdf幻灯片、供教师下载的习题解答pdf等多种形式。教师可以通过这些资源来辅助教学和评估学生的学习进度。 本书是一本内容全面、理论与实践相结合的专业教材,旨在为控制和计算机工程领域的学生和研究者提供多智能体系统控制领域的最新研究成果和仿真应用工具。通过阅读本书,读者能够获得丰富的理论知识,并通过Python编程实践加深理解,最终实现协同控制前沿技术的快速掌握。
2025-10-22 12:11:34 13.5MB 多智能体 Python 分布式控制
1
本研究的标题为“非线性事件触发控制策略的多智能体系统有限时间一致性”,该标题所涵盖的知识点主要涉及多智能体系统的控制理论、事件触发控制策略以及非线性系统在有限时间内的同步(一致性)问题。 多智能体系统是由多个自主的智能体(如机器人、移动传感器、无人机等)组成的分布式系统,它们通过相互之间的通信和协作来完成复杂的任务。多智能体系统的协调控制吸引了众多研究领域的关注,因为它在很多应用中,如无人机飞行控制、多个微卫星的姿态同步、环境监控等方面具有重要的作用。 在多智能体系统中,“一致性”(consensus)是一个非常核心的概念。一致性指的是所有智能体通过相互作用最终在某种量(如位置、速度、方向等)上达成一致。这种行为是形成控制、集群等更复杂集体行为的基础。例如,在形成控制中,智能体需要根据与邻居智能体之间的相对位置信息来调整自己的位置,以形成预定的队形或图案。 在实际应用中,由于每个智能体通常具有有限的能量资源,因此在控制器设计中必须考虑能源的节约。传统的一致性控制策略通常需要每个智能体定期地更新控制输入并与其他智能体进行通信,这可能会导致通信资源的大量消耗和控制器更新的高频率。 为了解决这个问题,本研究提出了一种基于事件触发策略的非线性一致性协议。事件触发控制是一种智能控制方法,它根据预设的条件来决定是否更新控制器或进行通信,从而显著减少了通信消耗和控制器更新的频率。与传统的周期性触发方式相比,事件触发策略只有在系统状态发生显著变化时才会触发控制器的更新,这样可以避免频繁的计算和通信,从而节省能源。 文章中提出的两个新的非线性一致性协议,可以显著减少通信消耗和控制器更新频率。研究结果表明,在提出的非线性一致性协议下,多智能体系统能够在有限时间内达成一致性。此外,研究还提供了触发间隔的界限,以证明不存在Zeno行为(指控制输入的触发频率无限大的情况,即所谓的“无止境”的行为)。 为了验证所提出的一致性协议的有效性,研究中采用了仿真实验。仿真实验是验证理论和算法可行性的重要手段,通过仿真实验可以模拟多智能体系统在不同条件下的行为,并验证一致性协议是否能够使系统达到预期的同步效果。 文章的研究内容包括了对领导者存在和不存在两种情况下多智能体系统的有限时间一致性问题的探讨。在有领导者的情况下,多智能体系统会以领导者的行为作为参考,使得所有智能体跟随领导者达成一致性。而在没有领导者的情况下,智能体需要通过相互之间的信息交换,自主地达成一致性。 研究论文通常包含提出问题、设计方法、理论分析、仿真实验和结论等部分。本研究的理论分析部分可能涉及到数学证明和稳定性分析,以展示在特定条件下多智能体系统达成一致性的可能性和稳定性。此外,论文可能会讨论所提出的协议与现有协议相比的性能优劣,以及实际应用中的潜在问题和解决方案。 需要注意的是,研究论文的写作通常遵循一定的格式和标准。例如,论文的作者会给出通信地址和电子邮件地址,以便读者进行交流和询问。此外,文章会标明接收日期、修订日期和接受日期,以及文章的DOI编号,这有助于读者查找和引用。在论文中还会出现关键词和摘要部分,以简明扼要地介绍研究内容和结论。这些内容虽然不是直接的学术知识点,但它们为学术交流提供了便利。
2025-05-12 21:00:00 304KB 研究论文
1
多智能体系统——竞争网络下异构多智能体系统的分组一致性问题 Group consensus of heterogeneous multi-agent system (附论文链接+源码Matlab) 多智能体系统——具有非线性不确定干扰的多智能体系统的固定时间事件触发一致性控制(附论文链接+源码Matlab) 2021年五一杯数学建模消防救援问题思路 2021年MathorCup A题自动驾驶中的车辆调头问题思路(附论文 程序链接)
2024-08-11 18:45:48 11KB 网络 网络 matlab
1
基于状态观测器的离散线性多智能体系统协同输出调节
2023-04-03 16:08:51 224KB 研究论文
1
多智能体有限时间一致性算法,自己用matlab编写的,能够正常运行,可自行修改使用。 主程序部分代码: In = [Xl Xf]'; out = ode23(@ctFun, tspan, In); t = out.x; X = out.y; plot(t,X(1,:), t,X(2,:), t,X(3,:), t,X(4,:), 'linewidth',1.5); %% ODE Function function out = ctFun(~,In) global L B a = 0.5; Xl = In(1); Xf = In(2:4); v_0 = 0; dXl = v_0; delta = -(L+B)*(Xf-Xl); delta = sig(delta,a); dX = delta+ v_0; out = [dXl dX]; end 有限时间代码: function sig = sig(x,a) sig = sign(x).*abs(x).^a; end
1