基于生物启发式算法的多智能体强化学习算法,强化学习,生物启发算法
2022-12-12 11:28:44 6.22MB 强化学习 多智能体
基于生物启发式算法的多智能体强化学习算法matlab和python实现
2022-12-12 11:28:43 121.21MB matlab 强化学习 自学习 python
多智能体系统是一种分布式计算技术,可用于解决各种领域的问题,包括机器人系统、分布式决策、交通控制和商业管理等。这是被高引用的综述论文,入门可以看看。
2022-09-13 15:35:22 427KB
1
人工智人-家居设计-多智能体强化学习方法研究.pdf
2022-07-07 20:03:09 1.66MB 人工智人-家居
人工智人-家居设计-多智能体强化学习及其在机器人足球中的应用研究.pdf
2022-07-07 20:03:08 2.94MB 人工智人-家居
BioMARL:基于生物启发式算法的多智能体强化学习算法 项目介绍: 多智能体系统(MAS)通过解决复杂任务的规模,可靠性和智能性,已被广泛的地面不同的应用领域,如计算机网络,机器人和智能电网等。和生产的重要因素。然而,以往的多代理通信研究主要是预先定义的通信协议或采用额外的决策模块进行通信调度,这将造成巨大的通信开销,并且不能直接推广到一个大型代理集合。了一个轻量级的通信框架:基于信息素协同机制的分布式深度Q网络算法(Pheromone协作深度Q网络,PCDQN) ,它结合了深度Q网络和stigmergy机制。我们证明了PCDQN框架的优越性,同时也将我们的模型转移到解决多代理路径搜索问题上。利用PCDQN框架,多代理编队能够学习适当的策略,成功地在雷区导航环境中获得最优路径。 实验环境 Windows10操作系统,8GB内存,2核Intel Core i7-6500U pytorch-
2021-12-30 23:40:46 7.65MB Python
1
在城市交通环境,交通流的正确预测是比较困难,因为多个十字路口,这使得预设的交通控制 模型之间的相互作用和纠缠在一起,不能在所有的交通情况下始终保持高性能的预测。考虑 到的强化学习的所具有的自主学习能力,本文提出了基于多智能体强化学习的交通信号控制方 法。没有预设的控制模型,多协作代理可以学习相应的实时交通状况下的最优控制策略。通过 实验结果证明了这种方法的可行性和有效性。
2021-12-30 22:47:49 237KB 综合文档
1
多智能体强化学习 学习环境env
1
城流 CityFlow 是一种用于大规模城市交通场景的多智能体强化学习环境。 检查这些功能! 一种微观交通模拟器,可模拟每辆车的行为,提供最高级别的交通演变细节。 支持灵活定义路网和交通流 为强化学习提供友好的python接口 快速地! 精心设计的数据结构和多线程仿真算法。 能够模拟城市范围内的交通。 请参阅与 SUMO 的性能比较。 具有不同线程数(1、2、4、8)和 SUMO 的 CityFlow 之间的性能比较。 从小型 1x1 网格路网到城市级 30x30 路网。 当您需要通过 python API 与模拟器交互时,速度会更快。 截屏 使用 CityFlow 的特色研究和项目 链接 WWW 2019 演示文稿 主页 文档和快速入门 码头工人 [1] 相扑首页 [2] 天让智能首页
1
two_prisoners.py
2021-06-18 09:11:01 24KB 多智能体 强化学习 囚徒困境
1