在中国安防产业中视频监控作为最重要的信息获取手段之一,能对目标有效的提取是重要而基础的问题,因此本文在此背景下,围绕对监控视频的前景目标有效的提取问题,研究了关于1)静态背景、动态背景的前景目标提取,能在背景复杂化的条件下,将运动的目标;2)带抖动视频;3)静态背景下多摄像头对多目标提取;4)出现异常事件视频的判断等问题。给出了在不同情况下的前景目标提取方案。问题一是针对静态背景且摄像头稳定的情况下,如何对前景目标提取的问题。在题目要求的基础上,通过对附件2中几组视频的分析,我们发现所有前景目标的运动短暂且光线明暗变化不明显。由于传统的Vibe算法能抑制鬼影但是运行效果不理想,因此采用建立在帧差法上改进的Vibe算法模型求解问题。并和传统的Vibe算法做对比,结果显示改进的Vibe算法明显优于传统的算法。而且对我们的算法模型做了效果评价。详细数据参考正文与附录。
问题二是在背景为动态(如有水波的产生)的情况下,对前景目标的提取问题。在此问题中,由于动态背景存在使得提取出的图像帧具有大量的干扰噪声,对前景目标的识别和提取造成干扰,因此我们提出一种基于全局外观一致型的运动目标检测法。在用Vibe算法对场景预检测的基础上,建立混合高斯模型分别对前景和背景进行
1