针对全卷积神经网络多次下采样操作导致的道路边缘细节信息损失和道路提取不准确的问题,本文提出了多尺度特征融合的膨胀卷积残差网络高分一号影像道路提取方法。首先,通过目视解译的方法制作大量的道路提取标签数据;其次,在残差网络ResNet-101的各个残差块中引入膨胀卷积和多尺度特征感知模块,扩大特征点的感受野,避免特征图分辨率减小和道路边缘细节特征的损失;然后,通过叠加融合和上采样操作将各个尺寸的道路特征图进行融合,得到原始分辨率大小的特征图;最后,将特征图输入Sigmoid分类器中进行分类。实验结果表明:本文方法的提取精度优于经典全卷积神经网络模型,准确率达到了98%以上,有效保留了道路的完整性及其边缘的细节信息。
2024-05-04 08:34:44 6.54MB 道路提取 高分一号 残差网络
1
传统目标检测模型采用人工设计的目标特征,造成检测精度较差。基于深度学习的目标检测模型具有较高的检测精度,然而针对实时性和精度要求比较高的煤矿救援机器人应用场合,获取的图像信息较少且目标特征不明显,造成目标检测效果较差。为提高目标检测精度和速度,基于YOLO V3模型提出了一种多尺度特征融合的煤矿救援机器人目标检测模型。该模型主要包括特征提取和特征融合2个模块:特征提取模块采用空洞瓶颈和多尺度卷积获得更加丰富的图像特征信息,增强目标特征表达能力,提高了目标分类精度和检测速度;特征融合模块在特征金字塔中引入空间注意力机制,对含有丰富语义信息的高层特征图和含有丰富位置信息的低层特征图进行有效融合,弥补了高层特征图位置信息表达能力不足的缺点,提高了目标定位精度。将该模型部署在煤矿救援机器人嵌入式NVIDIA Jetson TX2平台上进行灾后环境目标检测实验,检测精度为88.73%,检测速度为28帧/s,满足煤矿救援机器人目标检测的实时性和精度需求。
1
多尺度特征融合图像超分辨率重建
2022-09-13 09:07:13 15.48MB 图像超分
1
在这项工作中,提出了一种用于裂纹检测的深度监督网络。在该网络中,DeepLab被用作密集特征提取器,以获得多尺度卷积特征。采用了一种新的多尺度特征融合模块。 该模块背后的主要动机是解决U形结构中具有语义信息的深层特征在逐层融合过程中被稀释的问题。深度监督学习用于多尺度特征的集成直接监督。此外,采用加权交叉熵损失函数来解决路面裂缝数据的样本不平衡问题。为了进行性能评估,我们分别在三个公共裂缝数据集上进行了实验。实验结果表明,我们的方法优于最先进的裂纹检测方法。
2022-09-04 20:05:31 15.32MB 强化学习
1
基于深度学习的目标检测技术在目标检测领域有强大的生命力,但是将其用于合成孔径雷达(SAR)图像舰船目标检测时并没有达到预期的效果。提出了一种基于卷积神经网络的SAR图像舰船目标检测算法用来检测多场景下的多尺度舰船目标,在单发多盒探测器检测框架的基础上,使用性能更好的Darknet-53作为特征提取网络,加入更深层次的特征融合网络,生成语义信息更加丰富的新的特征预测图。同时在训练策略上使用了一种新的二分类损失函数来解决训练过程中难易样本失衡的问题。在扩展的公开SAR图像舰船数据集上进行验证实验,实验结果表明,所提方法对复杂场景下不同尺寸的舰船目标的检测展现出了良好的适应性。
2022-03-11 16:04:01 14.29MB 机器视觉 合成孔径 神经网络 舰船目标
1
提出了一种基于多尺度特征融合的细粒度图像分类方法。通过运用特征金字塔结构对不同层次的特征进行尺度变换,再进行信息融合;之后筛选其中包含细节特征最多的前三个区域图,将其与图像的全局特征共同作用以判断图片所属的子类类别。在公开的细粒度数据集CUB-200-2011、Stanford Dogs上进行了实验,得到的分类精度分别为85.7%和83.5%。实验结果表明该方法对于精细化物体分类具有一定的优越性。
2021-12-11 15:55:18 1.66MB 图像处理 细粒度图 多尺度特 特征金字
1
多尺度特征融合的对抗神经网络人群计数算法.pdf
2021-09-25 17:06:07 1.39MB 神经网络 深度学习 机器学习 数据建模
基于多尺度特征融合网络的交通标志检测_刘胜.pdf
2021-03-14 09:14:08 1.28MB 图像识别
1