基于Transformer的Matlab代码:数据回归与多场景预测工具箱,适用于单、多变量时序预测与回归分析,Transformer回归 Matlab代码 基于Transformer的数据回归预测(可以更为分类 单、多变量时序预测 回归,前私我),Matlab代码,可直接运行,适合小白新手 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel Transformer 作为一种创新的神经网络结构,深受欢迎。 采用 Transformer 编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测的准确性。 1、运行环境要求MATLAB版本为2023b及其以上 2、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3、代码中文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,Transformer回归; Matlab代码; 无需更改代码; 数据集替换; 创新神经网络; 时间序列; 长短期依赖关系挖掘; R2; MAE; MSE; 评估指标。,基于Transfor
2025-11-29 14:17:23 1.42MB ajax
1
内容概要:本文档详细介绍了基于 Matlab 实现的 POD-Transformer 融合模型,用于多变量回归预测。POD(本征正交分解)用于数据降维,提取关键特征,而 Transformer 模型则捕捉时序数据的长依赖关系。项目通过数据预处理、POD 降维、Transformer 回归和模型评估四个模块,实现了高效的数据降维与多变量回归预测。该方法不仅提高了预测精度和模型泛化能力,还显著降低了计算资源消耗,适用于气象预测、金融市场分析、工业过程控制、智能医疗和智能交通系统等多个领域。; 适合人群:具备一定机器学习和数据处理基础,对多变量回归预测感兴趣的科研人员、工程师及研究生。; 使用场景及目标:① 实现数据降维与多变量回归的高效融合,提升预测精度;② 优化计算资源消耗,降低训练时间;③ 提供普适性的数据降维与回归预测框架,适应不同领域的多变量回归任务;④ 促进数据驱动的智能决策系统发展。; 其他说明:项目通过改进的 POD 算法和定制化的 Transformer 模型,解决了数据降维后的信息丢失、计算复杂度高等问题。代码示例展示了从数据预处理到模型训练和预测的完整流程,适合在资源受限的环境中部署。更多详细内容和代码资源可参考提供的 CSDN 博客和文库链接。
2025-11-29 10:55:59 35KB Transformer 多变量回归 数据降维 Matlab
1
多变量时间序列UEA数据,每个数据集文件夹下仅包含xxx_TRAIN.arff和xxx_TEST.arff两个文件,同时将文件中的%注释语句删除,使其能够直接通过scipy.io中的arff.loadarff方法读取数据。文件结构如下: New_Multivariate_arff: - ArticularyWordRecognition - ArticularyWordRecognition_TEST.arff - ArticularyWordRecognition_TRAIN.arff - AtrialFibrillation - AtrialFibrillation_TEST.arff - AtrialFibrillation_TRAIN.arff - BasicMotions - BasicMotions_TEST.arff - BasicMotions_TRAIN.arff ...
2025-11-28 20:33:09 854.71MB 数据集 时间序列 多变量时间序列
1
本文整理了五个常用的多变量时间序列异常检测数据集,包括SMD、SMAP/MSL、SWaT和WADI数据集,并提供了详细的标准化处理代码。这些数据集广泛应用于时间序列异常检测的基准测试,涵盖了不同领域的数据,如服务器机器数据、航天器遥测数据和水处理系统数据。文章详细介绍了每个数据集的具体信息、下载方式以及标准化处理步骤,包括时间格式统一、标签处理等。此外,还提供了针对MSL、SMAP、SMD、WADI和SWaT数据集的Python处理代码,帮助研究人员快速实现数据预处理。
2025-11-17 16:36:25 30MB 软件开发 源码
1
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01 30KB MATLAB LSTM EMD KPCA
1
内容概要:本文介绍了基于Transformer-BiGRU的多变量回归预测模型,详细阐述了模型的构建方法、数据预处理流程以及在Matlab中的具体实现。该模型结合了Transformer和BiGRU的优势,能够有效处理多变量输入并提高回归预测的精度。文中还讨论了多种优化算法的应用,如冠豪猪CPO和霜冰RIME,用于参数自动化寻优,进一步提升模型性能。此外,文章提供了详细的代码注释和测试数据,方便初学者快速上手。最后,探讨了该模型在金融预测、气象预测、医疗诊断等多个领域的广泛应用前景。 适合人群:对机器学习和深度学习感兴趣的科研人员、学生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要处理多变量输入并进行高精度回归预测的研究项目。目标是帮助用户理解和实现基于Transformer-BiGRU的多变量回归预测模型,掌握模型调参技巧,应用于实际数据分析任务。 其他说明:附带完整的Matlab代码和测试数据,确保用户可以直接运行并验证模型效果。
2025-10-22 18:02:30 1.6MB
1
内容概要:本文详细介绍了如何利用Matlab实现Transformer-LSTM结合的多变量回归预测模型。首先,文章解释了Transformer和LSTM各自的特点及其结合的优势,特别是在处理长序列依赖和时间序列数据方面。接着,提供了具体的Matlab代码示例,展示了从数据预处理(如读取Excel文件并转换为数值矩阵)、模型搭建(包括定义Transformer和LSTM层)、训练(采用Adam优化器和动态学习率策略)到评估(使用R²、MAE、RMSE、MAPE等指标)的全过程。此外,还讨论了模型的灵活性,可以通过修改输出层轻松切换为分类或其他类型的预测任务。文中强调了数据质量和特征选择的重要性,并给出了一些优化建议,如引入特征交叉层或使用霜冰优化算法。 适合人群:对机器学习尤其是深度学习感兴趣的研究人员和技术爱好者,特别是那些希望使用Matlab进行数据分析和建模的人群。 使用场景及目标:适用于需要处理多变量时间序列数据的预测任务,如经济趋势预测、工业传感器数据处理、股票市场波动分析等。目标是帮助用户快速上手并有效应用这一强大的预测工具。 其他说明:文章不仅提供了完整的代码实现,还包括详细的注释和图表辅助理解,确保即使是初学者也能顺利运行程序。同时,针对可能出现的问题给出了实用的解决方案,如避免数据归一化的常见错误,以及如何应对特定情况下的模型性能不佳等问题。
2025-10-15 15:45:33 1.6MB
1
西门子多变量模型预测控制(MPC)是一种先进的控制策略,它在工业过程控制领域得到了广泛的应用,尤其是在复杂和多变量的生产过程中。本文以蒸馏塔作为应用实例,详细阐述了西门子MPC在实际工程中的运用和优势。蒸馏塔是一种在石油炼制和化工生产中常见的设备,通过加热、冷却和分离不同物质的混合物来获得所需的化学成分。 我们来了解一下什么是多变量模型预测控制。MPC是一种以模型为基础的控制策略,它不是直接控制过程变量(如温度、压力、流量等),而是根据过程的数学模型来预测未来的输出,并且在预测的基础上选择最优的控制动作。这种控制策略能够处理具有多个输入和输出变量的复杂过程,能够同时优化多个控制目标,比如在蒸馏塔中,可能需要同时控制产品质量和能效。 在MPC控制框架中,最重要的是过程模型,它是对实际过程的数学描述,包括系统的动态特性和变量之间的相互关系。MPC利用这个模型来预测未来一段时间内各个变量的演变,并在每个采样周期内求解一个最优化问题,从而得到一组最优的控制动作序列。这组动作序列会应用到当前的控制周期,而下一周期则会重新进行计算和优化。 蒸馏塔作为西门子MPC应用实例,它的控制目标通常包括塔顶、塔底产品成分的质量控制,以及对塔内温度、压力、液位等关键参数的稳定控制。通过MPC的多变量优化能力,可以实现对这些参数的综合调控,有效避免产品质量的波动,提高操作的经济性。 文章中提到的PID控制器是另一种常见的控制策略,它具有简单、直观、易于实现等特点。PID代表比例(Proportional)、积分(Integral)、微分(Derivative)三个控制环节,通过这三个环节的线性组合来产生控制作用。虽然PID控制在很多应用场合有着良好的性能,但在面对具有较大时滞、强耦合或多变量干扰的复杂系统时,往往难以达到理想的控制效果。 相比之下,MPC的优势主要体现在以下几点: 1. 强大的多变量控制能力:MPC可以同时优化多个控制目标和约束,这对于像蒸馏塔这样具有多个变量的工艺过程来说非常关键。 2. 对过程模型的利用:MPC利用过程模型来预测未来的行为,从而能够提前做出调整,避免系统超出安全边界。 3. 可以处理各种约束条件:在实际生产过程中,许多操作变量和过程参数都存在着各种操作约束,MPC能够在优化过程中同时考虑这些约束,避免违反操作限制。 4. 容易适应和优化:由于MPC是基于模型的,当过程特性发生变化时,只需要重新调整过程模型,就可以快速适应新的工况。 5. 适应性强:MPC通过优化算法可以根据不同的工艺要求和控制目标进行调整,具有很好的灵活性和适应性。 在实际应用中,MPC通常需要安装在一套专用的硬件和软件平台上,西门子公司提供的解决方案通常包括了先进的控制算法和用户友好的操作界面,可以让操作人员更方便地对控制器进行监控和维护。 总结来说,西门子多变量模型预测控制在处理复杂生产过程中的蒸馏塔控制问题时,显示出了其强大的多变量处理能力和灵活的优化策略。通过与传统的PID控制对比,我们可以清晰地看到MPC在处理多变量、非线性、动态变化的工业过程中的优势。随着工业自动化水平的不断提高和智能控制技术的广泛应用,MPC技术必将在更多的工业领域发挥其重要作用。
2025-09-14 13:14:22 53KB
1
内容概要:本文深入探讨了HD-TVP-VAR-BK模型在高维多变量DY溢出指数计算中的应用,重点介绍了该模型相较于传统TVP-VAR-BK模型的优势,如更高的维度处理能力和更快的运行速度。文中还详细讲解了利用Elastic Net方法进行降维处理的具体步骤,并通过R语言实现了从数据导入、预处理、溢出指数计算、频域分解到最终结果导出和图表绘制的完整流程。此外,文章强调了HD-TVP-VAR-BK模型在处理大规模经济和金融数据时的重要性和实用性。 适合人群:从事经济学、金融学研究的专业人士,尤其是那些关注高维数据分析和时间序列建模的研究人员。 使用场景及目标:适用于需要分析大量高维时间序列数据的研究项目,旨在揭示不同变量之间的动态关系和溢出效应。通过学习本文,读者可以掌握最新的高维数据分析技术和工具,提升研究效率和质量。 其他说明:虽然本文提供了详细的理论解释和代码实例,但在实际应用中仍需根据具体数据集的特点进行适当调整和优化。
2025-09-06 17:29:44 685KB Elastic
1
HD-TVP-VAR-BK模型:高维多变量DY溢出指数的时变估计与频域分析,HD-TVP-VAR-BK模型:高维多变量DY溢出指数的时变估计与频域分析,HD-TVP-VAR-BK溢出指数,最新模型计算高维多变量DY溢出指数,并进行频域分解计算BK溢出指数 优势:通过Elastic Net方法进行降维处理,能够计算高维数据DY溢出指数,相较于传统TVP-VAR-BK模型只能计算最多20个变量,HD-TVP-VAR-BK可同时估计近百个变量,相较于Lasso BK,Elastic Net BK(弹性网络),HD-TVP-VAR-BK为时变估计,不用损失滚动窗口,且运行速度相对较快。 R语言代码,有注释和案例数据,能导出静态溢出矩阵,总溢出指数Total,溢出指数To,溢入指数From,净溢出指数Net 到 EXCEL,并实现画图。 ,核心关键词: 1. HD-TVP-VAR-BK溢出指数 2. 最新模型高维多变量DY溢出指数 3. 频域分解计算BK溢出指数 4. Elastic Net方法降维处理 5. 高维数据DY溢出指数计算 6. 传统TVP-VAR-BK模型 7. La
2025-09-06 17:17:24 1.56MB 数据结构
1