Shap解释Transformer多分类模型,并且基于shap库对transformer模型(pytorch搭建)进行解释,绘制变量重要性汇总图、自变量重要性、瀑布图、热图等等 因为是分类模型,所以只用到了Transformer的Encoder模块,使用了4层encoder和1层全连接网络的结果,没有用embedding,因为自变量本身就有15个维度,而且全是数值,相当于自带embedding 代码架构说明: 第一步:数据处理 数据是从nhanes数据库中下载的,自变量有15个,因变量1个,每个样本看成维度为15的单词即可,建模前进行了归一化处理 第二步:构建transformer模型,包括4层encoder层和1层全连接层 第三步:评估模型,计算测试集的recall、f1、kappa、pre等 第四步:shap解释,用kernel解释器(适用于任意机器学习模型)对transformer模型进行解释,并且分别绘制每个分类下,自变量重要性汇总图、自变量重要性柱状图、单个变量的依赖图、单个变量的力图、单个样本的决策图、多个样本的决策图、热图、单个样本的解释图等8类图片 代码注释详细,逻辑
2025-09-22 20:43:22 4.78MB xhtml
1
对文本进行情绪多分类,共八种情绪
2025-06-12 21:06:31 6.76MB 情绪分类
1
《NanoEdge AI Studio 多分类章节例程详解》 NanoEdge AI Studio 是一款强大的人工智能开发平台,它提供了丰富的工具和资源,帮助开发者快速构建、训练和部署AI模型。本章节我们将深入探讨其在多分类任务中的应用,通过具体的实例——"motor_detect"项目,来解析如何利用NanoEdge AI Studio进行此类工作。 一、多分类任务概述 在机器学习领域,多分类任务是指让模型学习识别并区分多个类别,例如识别图像中的不同物体、音频中的多种声音等。在这个"motor_detect"项目中,我们可能面临的是对不同类型的马达进行分类,如电动机、内燃机等。 二、数据集准备 数据集是训练模型的基础,对于多分类问题,数据集需包含各类别的样本。在NanoEdge AI Studio中,我们可以上传或导入已有的"data_set",确保每个类别的样本数量足够且分布均衡,以避免过拟合或欠拟合问题。"motor_detect"数据集应包含各种马达的录音或振动数据,每种类型马达的样本数量应该充足,以便模型能充分学习它们的特征。 三、特征工程 特征工程是将原始数据转化为模型可学习的输入的过程。在"motor_detect"项目中,可能需要提取音频文件的频谱特征,或者振动数据的时间序列特征。NanoEdge AI Studio提供了一系列预处理工具,如滤波、降噪、特征提取等,帮助我们构建有效的特征向量。 四、模型选择与训练 在NanoEdge AI Studio中,我们可以选择适合多分类任务的模型,如决策树、随机森林、支持向量机、神经网络等。对于"motor_detect"这样的时间序列数据,可能更适合使用循环神经网络(RNN)或长短时记忆网络(LSTM)。模型的训练过程涉及设置超参数、划分训练集和验证集,并通过反向传播优化权重,以达到最佳性能。 五、模型评估与优化 在模型训练完成后,需要使用验证集评估模型性能,通常会关注准确率、精确率、召回率、F1分数等指标。若模型表现不佳,可以调整超参数,或者尝试不同的模型架构。NanoEdge AI Studio的可视化工具能帮助我们直观理解模型的性能并进行调优。 六、模型部署与应用 一旦模型满足需求,就可以将其部署到边缘设备或云端,实现实时的马达类型识别。NanoEdge AI Studio支持多种部署选项,包括嵌入式设备、服务器或云服务,确保模型能在实际环境中高效运行。 总结,"NanoEdge AI Studio 多分类章节例程"为我们提供了一个学习和实践多分类任务的优秀平台。通过"motor_detect"项目,我们可以了解从数据准备到模型部署的全过程,提升在人工智能领域的技能。在实践中不断学习和优化,将有助于我们在未来应对更多复杂的人工智能挑战。
2025-05-27 17:12:07 21.86MB 人工智能
1
网络安全_卷积神经网络_乘法注意力机制_深度学习_入侵检测算法_特征提取_模型优化_基于KDD99和UNSW-NB15数据集_网络流量分析_异常行为识别_多分类任务_机器学习_数据.zip
2025-05-14 12:34:34 1.04MB
1
基于粒子群优化算法PSO优化SVM分类的Matlab代码实现:红酒数据集多分类实验,基于粒子群优化算法PSO优化SVM分类的红酒数据集Matlab代码实现与实验分析,粒子群优化算法PSO优化SVM分类—Matlab代码 PSO- SVM代码采用红酒数据集进行分类实验,数据格式为Excel套数据运行即可 输入的特征指标不限,多分类 可以替数据集,Matlab程序中设定相应的数据读取范围即可 提供三种可供选择的适应度函数设计方案 直接运行PSO_SVM.m文件即可 ,PSO; SVM分类; Matlab代码; 红酒数据集; 特征指标; 多分类; 适应度函数设计; PSO_SVM.m文件,PSO算法优化SVM分类—红酒数据集Matlab代码
2025-05-01 18:28:51 2.54MB 开发语言
1
confusion matrix使用MATLAB绘制多分类的混淆矩阵图,可自定义横纵坐标、字体、渐变颜色等,适用于深度学习、机器学习中多分类任务的结果分析混淆矩阵图。
2024-04-25 22:44:53 1KB matlab 混淆矩阵
1
全连接神经网络(DNN)分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-04-01 21:36:14 72KB 神经网络 dnn
1
keras进行验证码识别的训练样本集和测试样本集,每个验证码的名称即为验证码显示的字符
2024-03-15 10:20:36 7.79MB keras 人工智能 深度学习 python
1
SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。   目前,构造SVM多类分类器的方法主要有两类   (1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适合用于小型问题中;   (2)间接法,主要是通过组合多个二分类器来实现多分类器的构造,常见的方法有one-against-one和one-against-all两种。
2024-03-06 22:44:41 2KB 支持向量机 svm多分类
1
鲸鱼算法(WOA)优化BP神经网络分类预测,WOA-BP分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-02-29 17:16:29 75KB 神经网络
1