为了快速准确地获取黄瓜叶片的含氮量和叶面积指数等生长信息, 提出了采用多光谱图像技术对黄瓜生长信息进行检测的新方法。利用标定板建立黄瓜叶片光谱反射率同图像灰度值之间的线性公式。通过多光谱相机对样本在绿光、红光和近红外三个通道的图像进行处理, 获得叶片样本在每一通道的灰度值, 然后根据标定板所建立的灰度值与反射率间的经验线性公式将对应的灰度值转为反射率值, 并由反射率值计算出黄瓜的植被指数。采用最小二乘-支持向量机(LS-SVM)建立植被指数同叶片含氮量以及叶面积指数间的拟合模型。结果表明植被指数同叶片含氮量和叶面积指数的拟合相关系数分别为0.8665和0.8553。表明植被指数与黄瓜的叶片含氮量和叶面积指数具有紧密的相关性, 也为快速采集黄瓜生长信息提供了一种新方法。
2022-05-02 15:34:01 836KB 医用光学 多光谱图 黄瓜 含氮量
1
针对多光谱图像的空谱相关特性,提出一种基于卷积神经网络的端到端多光谱图像压缩方法。编码端,将多光谱数据整体输入到多光谱图像压缩网络中,采用卷积提取多光谱图像的主要光谱特征与空间特征,使用下采样减小特征数据的尺寸,并通过率失真优化控制光谱特征与空间特征数据的熵,使空谱特征数据分布更加紧凑,将量化后的中间特征数据进行无损熵编码得到压缩码流。解码端,码流经过熵解码、逆量化、上采样、反卷积的逆变换过程重构多光谱图像。实验结果表明,相同码率下该方法能有效保留多光谱图像谱间信息,并在图像恢复质量上比JPEG2000平均高约2 dB。
2021-05-09 20:14:10 11.32MB 图像处理 深度学习 多光谱图 卷积神经
1