在多准则下考察传感器的融合权重, 提出一种新的多传感器数据融合方法. 通过多个性能指标折中估计传感器权重, 以降低决策的主观性和偶然性; 提出从不同融合级别来定义多个准则, 定性地提高了多准则的信息量; 在没有决策者对各准则偏好信息的情况下, 以最小化准则冗余度和最大化评价差异度为原则建立多目标优化模型对准则权重向量优化求解. 仿真实验结果表明, 相比于单准则和单层次的融合方法, 所提出方法具有更低的决策风险和更高的稳定性.
给出一种新的神经网络——粗神经网络结构, 并给出了基于粗神经网络的多传感器数据融合
模型, 阐述了用于数据融合的粗神经网络的结构和训练方法。分析和仿真结果表明, 新模型不仅能解决
传统模型所能解决的问题, 而且能解决传感器输出为二值或一个范围的多传感器数据融合问题。