语音识别以语音为研究对象,它是语音信号处理的一个重要研究发现,是模型识别的一个分支,涉及到生理学、心理学、语言学、计算机科学以及信号处理等诸多领域。甚至还涉及到人的体态语言,最终目标是实现人与机器进行自然语言通信。 该资源使用TensorFlow2.x框架,详细的讲解了如何实现自动语音识别。 由于数据集THCHS-30过大,可自行去以下地址下载:http://www.openslr.org/18/,也可通过在博主的网盘分享下载:链接:https://pan.baidu.com/s/1tItruoTSgku8F_m2f-Gusg?pwd=duzh 提取码:duzh
2024-12-02 16:22:11 57.69MB 自然语言处理 语音识别 深度学习
1
在图像处理领域,车牌识别是一项重要的技术,广泛应用于交通监控、智能停车场等系统。MATLAB作为一款强大的数学计算和数据分析工具,提供了丰富的图像处理函数,使得实现车牌识别变得相对简单。本项目是基于MATLAB的车牌识别系统,特别针对蓝色车牌进行设计。下面将详细介绍其中的关键技术和步骤。 1. 图像预处理: 预处理是任何图像识别系统的基础,目的是减少噪声、增强特征并统一图像质量。在这个项目中,可能包括以下步骤: - **灰度化**:将彩色图像转换为灰度图像,简化处理。 - **二值化**:通过阈值分割将图像分为前景(车牌)和背景,便于后续操作。 - **平滑滤波**:使用高斯滤波或中值滤波消除噪声,保持边缘清晰。 - **直方图均衡化**:提高图像对比度,使细节更加明显。 2. 车牌定位: 这一步通常涉及边缘检测和轮廓查找。MATLAB中的Canny算法可以用于检测边缘,而findContours函数则能找出潜在的车牌区域。为了适应不同光照和角度,可能还需要进行倾斜校正,如使用Hough变换检测直线。 3. 色彩分割: 由于蓝色车牌的特性,可以通过色彩空间转换来分离车牌。项目描述中提到,可能使用HSV颜色空间,因为其对光照变化不敏感。设置合适的HSV值范围(如蓝色车牌的HSV值域),筛选出蓝色区域。对于新能源车牌,可能需要调整HSV值域以包含其特有的绿色。 4. 特征提取与模板匹配: 识别出的车牌区域可能还需进一步细化。可以利用边缘检测、直角检测等方法,确认车牌的矩形形状。然后,提取车牌字符的特征,如高度、宽度、间距等,以模板匹配或机器学习算法进行字符识别。 5. 字符识别: 字符识别通常分为两个阶段:特征提取和分类。特征提取可能包括字符轮廓、形状、面积等;分类则可采用支持向量机(SVM)、神经网络等模型进行。MATLAB提供多种机器学习工具箱,方便进行模型训练和测试。 6. 循环处理: 项目描述中提到添加循环,这可能是指对于输入的多张图片,需要重复以上步骤进行车牌识别。循环结构可以确保每张图片都能得到处理,并将结果输出或保存。 7. 性能优化: MATLAB虽然功能强大,但在处理大量图像时速度可能较慢。为了提高效率,可以考虑使用MATLAB的并行计算工具箱,或者将部分关键代码用C/C++重写,再通过MATLAB的MEX接口调用。 通过上述步骤,基于MATLAB的车牌识别系统能有效识别蓝色车牌,并具备一定的扩展性以适应新能源车牌。然而,实际应用中可能还需要不断调整参数、优化算法,以应对各种复杂环境和条件。
2024-08-16 19:18:13 5.27MB MATLAB 图像处理 车牌识别
1
opencv与c++的结合给图像和视频的开发带来了很大的方便,现在已经广泛与用于模式识别领域
2024-03-23 21:58:13 31KB opencv
1
混凝土结构在施工与使用的过程中易产生各种形式的裂缝,由此会产生诸多安全问题。传统的人工安全检测方法,不仅耗费财力和时间,而且无法保障其检测精度。为了提高混凝土表面裂缝的识别效率,提出了一种基于卷积神经网络结合聚类分割的识别方法,实现了对较复杂背景下混凝土表面裂缝图像的准确识别。研究结果显示,该方法不仅能够高效地分类,还能够高精度地对较复杂背景下的裂缝进行识别,这为降低混凝土表面裂缝识别的工作量、维护混凝土结构,对其进行安全检测提供了理论依据,同时也为以后更高精度和更复杂条件下的裂缝识别研究提供了一些参考。
2023-06-28 16:51:18 12.84MB 图像处理 裂缝识别 安全检测 卷积神经
1
对于指纹的特征提取包含几个步骤,脊线增强、脊线分割、脊线细化、细节点检测和细节点验证,本次大作业需要针对已经增强的指纹图片进行后续几个步骤,通过多种形态学算法进行分割、细化、细化后处理,找到其中的端点和分叉点,而指纹周边的伪细节点需要被去除。
2023-05-08 10:26:28 1.76MB matlab 图像处理 指纹识别
1
随着计算机视觉方向的发展与各种开源库的涌现,目标检测与图像识别的步骤也越来越规范并且趋于简单化。 本次大作业采用Pycharm编辑器,应用Python的OpenCV图像处理库,基于深度学习的卷积神经网络来识别图像中的手写的大写英文字母。具体功能步骤是:对图像进行切片、目标检测、图像识别、图像定位、识别出来的字母重新写入到图片中。
2023-03-20 15:02:35 9.46MB 图像处理 手写体识别 代码与报告
1
基于MATLAB的HMM语音信号识别,可以识别0-9十个阿拉伯数字,带有一个丰富的人机交互GUI界面。算法流程为:显示原始波形图……显示语音结束处放大波形图……显示短时能量……设置门限……开始端点检测……,也可以通过添加噪声,对比加噪后的识别准确率。
1
本小组研究的课题是基于深度学习的图像识别,最终实现的是对海量图片数据的学习和准确的识别,不仅如此,我们测试了几种不同的分类模型,并比较预测结果,计算预测准确率,对预测方法进行优化,希望得到一种最高效的预测方法,从而实现真正的机器智能化识别。 本小组课设主要基于python开发环境下的scikit-learn标准库以及PIL图像处理库,并采用matplotlib实现最终结果的比对,PIL库用于图像的特征值批量读取,scikit-learn标准库用于分类模型的构建,matplotlib则用于显示最终结果。
2023-03-03 15:35:15 1.89MB 图像处理 图像识别 深度学习 神经网络
1
语音信号处理 第二章 语音信号处理的基础知识 §2.2 语音和语言 §2.3 汉语语音学 §2.4 语音生成系统和语音感知系统 §2.5 语音信号生成的数学模型 §2.6 语音信号的特性分析 (1)语音中各个音的排列由一些规则所控制,对这些规则及其含义的研究称为语言学(linguistics)。 (2) 语音中各个音的物理特性和分类的研究称为语音学(phonetics) 。它考虑的是语音产生、语音感知等过程和各个音的特征和分类。 人类的说话交流是通过联结说话人和听话人的一连串心理、生理和物理的转换过程实现的。
1
压缩包包含:基于C++语言利用OpenCV编写的关于车牌识别系统的工程文件,车牌号码数据集以及验证图片,可供参考。
2022-12-31 22:07:00 8.71MB 图像处理 车牌识别
1