A*算法的Python实现-堆优化版。附测试用例图片。 A*算法解决二维网格地图中的(避障)寻路问题 输入:图片(白色区域代表可行,深色区域代表不可行) 输入:路径(在图中绘制)
2022-01-13 15:42:56 64KB A*算法 Python 堆栈 寻路算法
1
堆优化dijkstra算法。使用邻接表。邻接表的应用案例。 Dijkstra算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
2021-12-26 19:26:34 1KB c++ 最短路
1
堆优化的dijkstra,接口为邻接链表。
2021-12-01 11:24:23 2KB 最短路 dijkstra heap
1
戴克斯特拉算法(Dijkstra’s algorithm)是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出。迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。 该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知有 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s 到 t的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。对于不含负权的有向图,Dijkstra算法是目前已知的最快的单源最短路径算法。
2021-10-10 20:28:07 2KB 堆优化 迪杰斯特拉 python
1
基于贪婪算法的网格简化。 使用优先队列(堆)进行优化。
2021-07-27 16:16:16 5.18MB 图形学 网格简化 堆优化
1
本源代码借助标准C++ STL中的vector,list和heap等已封装的数据结构,优化了A星算法搜索地图、检索开始列表过程,减小了程序的时间和空间花费。经检验,检索20000*20000的随机障碍物地图时,程序在规划路径部分的平均耗时在两秒左右。
2019-12-21 20:44:01 4KB A星算法
1