功能特点 标定功能: 圆形标定:使用已知半径的圆形物体进行标定 矩形标定:使用已知尺寸的矩形物体进行标定 自定义标定:支持自定义物体标定(开发中) 测量功能: 圆形测量:测量圆形零件的半径 矩形测量:测量矩形零件的长度和宽度 支持与期望尺寸比较,计算误差 支持保存测量结果 输入方式: 图片输入:上传图片进行标定或测量 摄像头输入:使用摄像头实时捕获图像进行标定或测量 安装说明 确保已安装Python 3.7或更高版本 克隆或下载本项目到本地 安装依赖包: pip install -r requirements.txt 使用方法 运行应用: streamlit run app.py 在浏览器中打开显示的URL(通常是http://localhost:8501) 使用流程: 用户登录: 首次使用需要注册账号 使用已有账号登录系统 根据用户权限访问相应功能 首先进行标定: 图片模式:选择"标定"模式,上传标定图片,输入实际尺寸,点击"开始标定" 摄像头模式:选择"标定"模式,点击"打开摄像头",调整物体位置,输入实际尺寸,点击"开始标定" 然后进行测量: 图片模式:选择"测量"模式,上传测量图片,输入期望尺寸,点击"开始测量" 摄像头模式:选择"测量"模式,点击"打开摄像头",调整物体位置,输入期望尺寸,点击"开始测量" 查看测量结果,可选择保存结果 文件结构 app.py:主应用程序 auth.py:用户认证和权限管理模块 home_page.py:首页界面和导航模块 image_processing.py:图像处理模块 camera_utils.py:摄像头操作和图像采集 text_utils.py:文本处理和格式化 requirements.txt:依赖包列表 calibration/:存储标定数据 results/:存储测量结果 users/:用户数据和配置文件存储
1
# 基于Python的机器学习气温预测系统 ## 项目简介 本项目是一个基于Python的机器学习气温预测系统,旨在利用历史天气数据预测未来一天的气温。系统使用了神经网络模型,将前一天和上一年同一天的气温作为输入特征,来预测当天的气温。 ## 项目的主要特性和功能 1. 数据加载与处理系统能够加载CSV格式的天气数据,并进行预处理和可视化,包括数据清洗、异常值处理、数据转换等。 2. 模型训练系统使用神经网络模型进行气温预测,可自定义模型结构、损失函数和优化器。 3. 模型可视化系统可以可视化模型预测结果与实际数据的对比,帮助用户了解模型的性能。 4. 模型保存与加载系统能够在训练过程中保存最佳模型参数,并在需要时加载模型进行预测。 ## 安装使用步骤 1. 下载项目的源码文件。 2. 安装必要的Python库,如PyTorch、matplotlib等,可以使用pip进行安装。 3. 修改代码中的文件路径,确保数据文件和模型文件的路径正确。
2026-01-17 14:32:52 999KB
1
基于Python+YOLO姿态估计模型+Deepseek开发的一套能够贴合真实训练场景、提供量化评估与个性化语言指导的“智能羽球教练”系统(源码+模型) 系统攻克“多动作连续分析”这一技术难点,融合YOLOv8姿态估计、多动作分段识别算法与生成式AI,开发一套能够贴合真实训练场景、提供量化评估与个性化语言指导的“智能羽球教练”系统,探索人工智能技术在体育科学领域深度应用的新范式。 实现功能: 从羽毛球训练视频中提取运动员人体关键点(姿态识别 / Pose Estimation)。 计算关键技术指标(如:击球时刻身体姿态、步伐移动距离、手臂/膝盖角度等)。 将这些量化指标组织成结构化描述,发送给 DeepSeek 大模型 API,生成中文自然语言评价与改进建议。 在视频或单帧图像上可视化(骨架、关键角度、评分)。
2026-01-14 11:13:51 5.96MB Python
1
基于python小学班级积分管理系统1.0
2026-01-06 20:38:46 9.93MB
1
随着互联网技术的发展,微信小程序作为一种新型的应用形式,已成为各类企业推广产品和服务的重要渠道。本项目选取了具有丰富文化底蕴的傣族节日及民间故事作为推广主题,结合流行的前后端技术栈Python、Django和Vue.js,开发了一款旨在弘扬和推广傣族文化的微信小程序。 项目的核心技术之一是Python,一种广泛应用于后端开发的语言,因其简洁明了的语法和强大的社区支持,被开发者广泛使用。Python在本项目中扮演了数据处理和业务逻辑处理的关键角色。利用Python的高效性和易读性,开发者能够快速构建服务器端的API接口,处理小程序发送的请求,并进行相应数据的读写操作。 Django是一个高级的Python Web框架,它鼓励快速开发和干净、实用的设计。在本项目中,Django负责搭建后端服务的主体结构,包括数据库模型的创建、视图逻辑的编写以及模板渲染等。Django的ORM系统简化了数据库操作,使开发者能够通过类和对象的方式与数据库进行交互,而无需关注底层的SQL语句。此外,Django内置的用户认证系统、权限控制和内容管理等模块,极大地提高了开发效率,减少了重复开发的工作量。 Vue.js是一个渐进式的JavaScript框架,专注于构建用户界面。它通过组件化的方式使开发者能够以数据驱动和组件复用的方式开发前端页面。在本项目中,Vue.js的响应式系统能够高效地根据数据的变化自动更新页面,而无需直接操作DOM。Vue.js的灵活性和易用性使得前端开发者能够以声明式的方式编写代码,减少了开发难度,并缩短了开发周期。 微信小程序是腾讯公司推出的一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或搜一下即可打开应用。基于微信的庞大用户群体,小程序具有天然的流量优势和传播优势。本项目中的小程序部分,利用了微信小程序平台提供的丰富的API接口,实现了用户的快速登录、故事内容的浏览、分享和互动等功能。通过微信小程序,项目能够触达更广泛的用户群体,有效推广傣族的节日文化和民间故事。 项目中还包含源码、开发文档、调试文档和讲解等内容,为开发者提供了详尽的开发和调试指南,确保了项目的顺利进行。源码的开放也为其他开发者提供了学习和二次开发的机会,能够让更多的人参与到傣族文化的推广工作中。 在内容的丰富性方面,本项目不仅包括了傣族节日的介绍,也涉及到了多姿多彩的民间故事,如傣族民间故事《召树屯与喃木诺娜》、《孔雀公主》等,通过生动的故事情节和深刻的道德寓意,传递了傣族人民的生活智慧和文化价值。通过这款小程序,用户不仅能够了解到傣族的节日庆典活动,还能够聆听和分享具有民族特色的民间传说,从而加深对傣族文化的认识和理解。 本项目综合运用了Python、Django、Vue.js和微信小程序等技术,为推广傣族节日及民间故事提供了一个有效的平台。该项目不仅有技术上的创新,同时也承载了文化传承和交流的重要使命,是一个集技术与文化推广于一体的优秀应用开发实例。
2026-01-05 20:13:37 24.51MB vue.js python django 微信小程序
1
内容概要:该论文研究了用于天然气发动机余热回收的有机朗肯循环(ORC)系统的动态行为。作者建立了ORC的动态数学模型,分析了蒸发压力、冷凝压力、排气出口温度和工作流体等设计参数对ORC动态行为的影响。研究发现,不同工作流体会导致显著不同的动态响应速度,而其他参数对动态响应速度影响较小。因此,在设计ORC时应重点考虑工作流体以匹配发动机工况的动态特性。此外,不同蒸发压力、冷凝压力和排气温度设计的ORC系统可使用相同的PID控制器,但对于临界温度差异较大的不同工作流体则不适用。论文还提供了详细的ORC动态模型代码实现,包括ORCParameters类、orc_dynamic函数、PIDController类、simulate_orc函数以及排气条件函数等,用于模拟不同工况下的动态响应。 适合人群:具备一定热力学和控制理论基础的科研人员、研究生或工程师,尤其是从事发动机余热回收系统设计和优化工作的专业人士。 使用场景及目标:①研究不同工作流体对ORC系统动态响应的影响;②评估和优化PID控制器在ORC系统中的应用效果;③分析发动机工况变化(如排气温度和流量的阶跃变化)对ORC系统性能的影响;④探索不同设计参数(如蒸发压力、冷凝压力等)对ORC系统动态行为的影响。 其他说明:此资源不仅提供了理论分析,还包括了详细的Python代码实现,便于读者进行仿真实验和进一步的研究。代码涵盖了从简单的动态模型到更复杂的多工质支持、多种瞬态工况模拟以及控制系统设计等多个方面,为深入理解和优化ORC系统提供了全面的支持。
2026-01-05 10:02:59 782KB 有机朗肯循环 动态行为 PID控制器
1
这个是完整源码 python实现 Flask,Vue 【python毕业设计】基于Python的Flask+Vue物业管理系统 源码+论文+sql脚本 完整版 数据库是mysql 本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发展随后依照传统的软件开发流程,最先为系统挑选适用的言语和软件开发平台,依据需求分析开展控制模块制做和数据库查询构造设计,随后依据系统整体功能模块的设计,制作系统的功能模块图、E-R图。随后,设计框架,依据设计的框架撰写编码,完成系统的每个功能模块。最终,对基本系统开展了检测,包含软件性能测试、单元测试和性能指标。测试结果表明,该系统能够实现所需的功能,运行状况尚可并无明显缺点。本文首先实现了基于Python的Flask+Vue物业管理系统技术的发
2026-01-03 13:30:22 7.18MB 物业管理
1
标题基于Python的个性化书籍推荐管理系统研究AI更换标题第1章引言介绍个性化书籍推荐系统的背景、研究意义、当前研究现状以及本文的研究方法和创新点。1.1研究背景与意义阐述个性化推荐在书籍管理中的重要性及其对用户体验的影响。1.2国内外研究现状概述当前个性化书籍推荐系统的发展状况和存在的问题。1.3论文方法与创新点介绍本文采用的研究方法以及在个性化书籍推荐方面的创新之处。第2章相关理论阐述个性化推荐系统的基础理论和相关技术。2.1推荐算法概述介绍常用的推荐算法及其优缺点。2.2Python在推荐系统中的应用探讨Python在构建个性化推荐系统中的作用和优势。2.3用户画像与书籍特征提取分析如何提取用户兴趣和书籍特征,以便进行精准推荐。第3章系统设计详细描述基于Python的个性化书籍推荐管理系统的设计方案。3.1系统架构与功能模块介绍系统的整体架构以及各个功能模块的作用。3.2推荐算法实现详细阐述推荐算法在系统中的具体实现过程。3.3用户界面与交互设计分析系统的用户界面设计和用户交互流程。第4章系统实现与测试介绍系统的具体实现过程以及测试方法和结果。4.1系统实现细节阐述系统的开发环境、技术选型以及关键代码实现。4.2系统测试与性能评估介绍系统的测试方法、性能指标以及测试结果分析。第5章应用案例分析通过具体案例展示个性化书籍推荐管理系统的实际应用效果。5.1案例背景与数据准备介绍案例的背景以及数据准备过程。5.2推荐效果展示与分析展示系统在实际应用中的推荐效果,并进行详细分析。5.3用户反馈与改进建议收集并分析用户对系统的反馈意见,提出改进建议。第6章结论与展望总结本文的研究成果,并对未来研究方向进行展望。6.1研究结论概括本文的主要研究内容和取得的成果。6.2研究展望分析当前研究的局限性,提出未来可能的研究方向和改进措施。
2025-12-28 16:32:59 100.35MB python django vue mysql
1
在当今信息化快速发展的时代,自动化处理和分析大量数据的需求日益增长。其中,图片转表格功能作为数据录入和信息提取的重要环节,受到了广泛的关注和研究。基于Python开发的图像处理和表格提取解决方案具有强大的灵活性和适应性,尤其在使用OpenCV和PaddlePaddle这样的开源库时,可以有效地实现图片中信息的智能识别和转换。 OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,它提供了大量的图像处理和分析的函数,是进行图像处理的有力工具。OpenCV支持多种编程语言,但以Python接口最为友好,因此在Python项目中应用广泛。借助OpenCV,开发者可以轻松实现图像预处理、特征提取、目标检测等关键步骤。 PaddlePaddle(Parallel Distributed Deep Learning)是百度研发的深度学习平台,提供了丰富的深度学习模型和算法,支持各种硬件环境。它以易用性和高性能著称,尤其在图像识别、语音识别、自然语言处理等方面展现出强大的功能。在图片转表格的项目中,可以利用PaddlePaddle进行训练和部署,实现对图片中文字的高准确率识别。 结合Python、OpenCV和PaddlePaddle的优势,可以构建一个高效稳定的图片转表格系统。通过Python脚本控制整个流程,其次利用OpenCV进行图像的预处理和定位,确定表格的位置和单元格的布局;接着,将预处理后的图像或图像区域传给PaddlePaddle的OCR(Optical Character Recognition,光学字符识别)模型,由模型进行文字的识别和提取;将识别出的文字按照表格的格式进行排版,生成可编辑的表格文件,如CSV或Excel格式。 从项目标签“Python项目”可以看出,该解决方案主要面向具有一定Python编程基础的开发者。Python因其简洁易学的特点,已成为数据处理和科学计算领域的首选语言。Python项目往往具有代码简洁、开发周期短、社区支持广泛的优势,因此非常适合用于快速开发图片转表格这样的实用工具。 在项目实践中,可能需要处理多种类型的图片,包括但不限于扫描件、截图、不同分辨率的照片等。每种类型可能对应不同的挑战,如模糊度、噪声、倾斜等,这就需要在使用OpenCV进行图像预处理时,设计出更加智能和健壮的算法来应对这些挑战。 此外,对于表格的转录,不仅要能够准确识别出表格中的文字,还需要能够理解表格的结构。这可能涉及到表格线的检测,以及如何将识别出的文字准确地填入对应的单元格中。在复杂情况下,还需要进行一定的上下文理解,以正确地处理合并单元格、跨行或跨列等复杂情况。 基于Python、OpenCV和PaddlePaddle的图片转表格项目,是将图像处理技术和深度学习相结合的产物,它不仅能够提高数据录入的效率,还能减少人为错误,对于提高工作效率和数据准确性具有重要意义。
2025-12-23 16:00:40 1.46MB Python项目
1
影视数据分析应用统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。影视数据分析可帮助人们做出观看影视的选择及投入更合适的影视,尤其对视频管理平台有很好的帮助。影视数据分析是建立在数基础,20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。同时,在数据获取、处理和分析过程中考虑数据安全、技术经济、工程伦理、行业规范等要素。以不同流媒体电影数据为背景,通过调研、分析数据, 完成数据预处理、数据分析和数据可视化等操作,使学生掌握相关的智能数据处理与智能系统开发的知识,培养智能信息系统项目开发过程中的分析、设计和工程文档编写能力,提高工程应用能力和综合分析、解决实际问题的能力。
2025-12-20 20:51:44 119.1MB python 数据挖掘 人工智能
1