城市交通道路流量预测代码+数据 分享城市交通道路流量预测代码+数据 分享城市交通道路流量预测代码+数据 分享
2024-03-13 18:11:19 13.81MB
1
基于神经网络的交通流预测(SAEs、LSTM、GRU)。 数据来自 Caltrans 绩效测量系统 (PeMS)。数据是从跨越加利福尼亚州所有主要大都市地区的高速公路系统的各个探测器实时收集的。 运行以下命令来训练模型: python train.py --model model_name 您可以选择“lstm”、“gru”或“saes”作为参数。.h5重量文件保存在模型文件夹中。 Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19