Graph Neural Networks: Methods, Applications, and Opportunities 在过去十年左右的时间里,我们见证了深度学习重振机器学习领域。它以最先进的性能解决了计算机视觉、语音识别、自然语言处理和各种其他任务领域的许多问题。数据通常在这些域中的欧几里得空间中表示。各种其他域符合非欧几里得空间,图是其中的理想表示。图适用于表示各种实体之间的依赖关系和相互关系。传统上,图形的手工特征无法从这种复杂的数据表示中为各种任务提供必要的推理。最近,出现了利用深度学习中的各种进步来绘制基于数据的任务的趋势。本文对每个学习设置中的图神经网络 (GNN) 进行了全面调查:监督学习、无监督学习、半监督学习和自监督学习。每个基于图的学习设置的分类都提供了属于给定学习设置的方法的逻辑划分。从理论和经验的角度分析每个学习任务的方法。此外,我们提供了构建 GNN 的通用架构指南。还提供了各种应用程序和基准数据集,以及仍然困扰 GNN 普遍适用性的开放挑战。
1
Bridging the Gap between Spatial and Spectral Domains:A Survey on Graph Neural Networks 深度学习的成功在各种机器学习任务中得到了广泛认可,包括图像分类、音频识别和自然语言处理。作为深度学习在这些领域之外的扩展,图神经网络 (GNN) 旨在处理以前的深度学习技术难以处理的非欧图结构。现有的 GNN 使用各种技术呈现,这使得直接比较和交叉引用更加复杂。尽管现有研究将 GNN 分为基于空间和基于光谱的技术,但尚未对它们的关系进行彻底检查。为了弥补这一差距,本研究提出了一个系统地整合了大多数 GNN 的单一框架。我们将现有的 GNN 组织到空间和光谱域中,并暴露每个域内的连接。谱图理论和近似理论的回顾在进一步研究中建立了跨空间和谱域的强关系。
1
在过去十年左右的时间里,我们见证了深度学习让机器学习领域重新焕发活力。它以最先进的性能解决了计算机视觉、语音识别、自然语言处理等领域的许多问题。这些领域的数据一般用欧几里得空间表示。
2021-08-26 09:11:54 1.21MB #资源达人分享计划# GNN
1
近些年来,深度学习已经成为处理NLP各种任务的主要方法。由于用图(graph)来表征文本可以更好的获取文本的结构信息,且随着火热的图神经网络的兴起,各种各样的NLP问题开始用图结构的形式来表示和学习。因此,为大量的NLP任务开发新的图深度学习技术就成为了一个必要的需求。
2021-06-18 19:09:20 2.86MB NLPforGNN
1