在IT领域,图嵌入(Graph Embedding)是一种将图中的节点转化为低维向量表示的技术,这在处理复杂网络结构的问题中具有广泛的应用。Cora数据集是学术界常用的图数据集,常用于节点分类任务,而DeepWalk与Word2Vec则是实现图嵌入的两种重要方法。 Cora数据集是一个引文网络,包含2708篇计算机科学领域的论文,这些论文被分为七个类别。每篇论文可以通过引用关系与其他论文相连,形成一个复杂的图结构。节点代表论文,边表示引用关系。对Cora数据集进行分类任务,旨在预测一篇论文的类别,这有助于理解论文的主题和领域,对于推荐系统和学术搜索引擎优化具有重要意义。 DeepWalk是受Word2Vec启发的一种图嵌入方法,由Perozzi等人在2014年提出。Word2Vec是一种用于自然语言处理的工具,它通过上下文窗口来学习词向量,捕获词汇之间的语义关系。DeepWalk同样采用了随机游走的思想,但应用在图结构上。它通过短随机路径采样生成节点序列,然后使用 Skip-gram 模型学习节点的向量表示。这些向量保留了图中的结构信息,可以用于后续的分类、聚类等任务。 源代码通常包含了实现DeepWalk的具体步骤,可能包括以下部分: 1. 数据预处理:读取图数据,如Cora数据集,构建邻接矩阵或边列表。 2. 随机游走:根据图结构生成一系列的节点序列。 3. Skip-gram模型训练:使用Word2Vec的训练方法,更新每个节点的向量表示。 4. 图嵌入:得到的节点向量可作为图的嵌入结果。 5. 应用:将嵌入结果用于分类任务,如利用机器学习模型(如SVM、随机森林等)进行训练和预测。 "NetworkEmbedding-master"可能是包含其他图嵌入算法的项目库,除了DeepWalk,可能还包括其他如Node2Vec、LINE等方法。这些算法各有特点,比如Node2Vec通过调整两个参数(p和q)控制随机游走的返回概率和深度优先搜索的概率,以探索不同的邻居结构。 小组演示PPT可能涵盖了这些技术的原理、实现过程、性能评估以及实际应用案例,帮助团队成员和听众更好地理解和掌握图嵌入技术。通过这样的分享,可以促进团队内部的知识交流和技能提升,对于解决实际问题有着积极的作用。 这个压缩包资源提供了学习和实践图嵌入技术,特别是DeepWalk和Word2Vec的机会,结合Cora数据集,可以深入理解图数据的处理和节点分类任务的执行过程。对于软件/插件开发者、数据科学家和机器学习工程师来说,这些都是宝贵的学习材料。
2025-05-09 16:33:11 3.37MB 数据集 word2vec
1
c#,.net使用QRCoder生成海报图,嵌入定位带logo的二维码c#,.net使用QRCoder生成海报图,嵌入定位带logo的二维码本案例适用在市场部同事做推广营销时推送个人专属链接,绑定自身专属客户,引导客户了解产品等各方面业务的一种引导模式。控制台应用程序组件 QRCodervs
2024-08-08 18:00:41 1.49MB .net vs2019 控制台程序
1
按键——在嵌入式系统应用里,占有非常重要的地位。按键——也是用户交互系统里最重要的一个部分。虽然,目前大行其道的触摸屏,电容屏吞噬了大壁江山,但是按键依然不可替代。于是,我们就来看看按键是如何设计的吧!
1
动态图嵌入方法 该页面概述了有关动态图嵌入/表示或动态网络嵌入/表示的重要方法。 方法 已发表 代码 描述 ICLR 20 -- WSDM 20 归因于 AAAI 20 归因于 ICLR 19 -- -- CIKM 19 -- KDD 19 异质 ECML PKDD 19 归因与异类 IJCAI 19 -- AAAI 18 -- IJCAI 17讲习班 -- -- 传统知识DEDE 18 -- 传统知识16 --
2023-04-08 21:24:51 2KB
1
截图小工具(Faststone Capture) ——仅有300多KB,拥有自定义区域截图、滚动截屏、屏幕录像等功能,是一款值得推荐的截图小工具。
2023-01-06 09:29:15 5.31MB 图嵌入 录屏 工具 截图
1
基于知识图嵌入的推荐系统 基于知识图嵌入的推荐系统 本系统是一个基于知识图嵌入的商品推荐系统,以下是该系统的详细介绍,基本代码都是自己所写,TransE和Rescal方法实现部分是照着论文与相关代码自己进行的复现,并且相关代码中都有我写的一些注释。 1.generate_data.py是用于生成模拟数据,在进行真实使用时可以参照所生成的模拟数据的格式进行数据录入 2.data文件夹下需要有entities.txt以及relations.txt两个数据,他们分别是实体(people和items)的名称以及索引号,以及关联的名称以及索引号,关联也可以有多种,然后该文件夹下还应该有train.txt,valid.txt和test.txt,作为模型训练的依托,其中的neg.txt可要可不要,这个文件并不参与模型的训练过程 3.dataset.py文件主要是模型训练中处理数据的代码,model.p
2022-11-21 21:20:29 1.77MB 系统开源
1
凯格 知识图嵌入(KGE)库是与统计关系学习(SRL)有关的最新技术的一种实现,用于解决链接预测问题。 这些技术将大型知识图的结构映射到能够预测新三元组中缺失关系的模型上[1-2]。 此代码中实现的技术包括TransE,DistMult,RESCAL和ComplEx。 技术要求 该系统是在python 2.7中开发的。 该代码取决于rdflib,downhill和theano [3]软件包。 连同其他依赖项一起安装: pip install rdflib downhill theano 使用例 生成和评估模型的最简单方法是调用run.py脚本。 所述model参数是可用的技术中, data是将要执行的数据集的完整路径,所述k是嵌入向量的维数,所述epoch是历元将被执行的次数和folds使用的折叠的数量在k折交叉验证技术中。 执行KGE技术的最简单方法是: python run.p
2022-10-31 22:09:19 8.84MB Python
1
Introduction Background and Traditional Approaches Node Embeddings Graph Neural Networks Generative Graph Models
2022-10-18 17:05:47 5.57MB 图嵌入
1
针对市面多数多媒体播放器软件自身体系庞大、系统资源占用率高、加载耗时、速度慢等方面的不足以及捆绑其他插件,设计一种嵌入式Linux系统的多媒体播放器。设计以QT基础类库为前端界面,套用Phonon多媒体框架,使用GStreamer解码器,从而实现多媒体资源的加载、播放、字幕视频显示、基本播放控制等功能。测试证明,该播放器界面友好,运行稳定,能够实现媒体文件的有效播放和控制。
1
Role2Vec ⠀ ⠀ 基于学习角色的图嵌入的可扩展并行gensim实现(IJCAI 2018) 。 抽象的 随机游走是许多现有网络嵌入方法的核心。 但是,这样的算法由于使用随机游走而具有许多局限性,例如,由于这些方法所产生的特征与顶点身份相关联,因此无法转移到新的节点和图上。 在这项工作中,我们介绍了Role2Vec框架,该框架使用了归因于随机游走的灵活概念,并为泛化现有方法(例如DeepWalk,node2vec和许多利用随机游走的其他方法)奠定了基础。 我们提出的框架使这些方法可以更广泛地应用于转导和归纳学习,以及在具有属性的图上使用(如果可用)。 这是通过学习泛化到新节点和图的功能来实现的。 我们表明,我们提出的框架是有效的,平均AUC改善了16.55%,同时所需的空间比各种图形上的现有方法平均少853倍。 二阶随机游走采样方法取自的参考实现。 该模型现在也可在包中找到。
2022-05-14 17:39:27 4.35MB machine-learning research deep-learning tensorflow
1