针对栈式稀疏去噪自编码器(SSDA)在图像去噪上训练难度大、收敛速度慢和普适性差等问题,提出了一种基于栈式修正降噪自编码器的自适应图像去噪模型。采用线性修正单元作为网络激活函数,以缓解梯度弥散现象;借助残差学习和批归一化进行联合训练,加快收敛速度;而为克服新模型对噪声普适性差等问题,需要对其进行多通道并行训练,充分利用网络挖掘出的潜在数据特征集计算出最优通道权重,并通过训练权重权重预测模型预测出各通道最优权重,从而实现自适应图像去噪。实验结果表明:与目前降噪较好的BM3D和SSDA方法相比,所提方法不仅在收敛效果上优于SSDA方法,而且能够自适应处理未参与训练的噪声,使其具有更好的普适性。
1
学习丰富的功能以进行真实图像还原和增强(ECCV 2020) , , , , , 和 论文: : 补充文件: 视频演示: : 摘要:为了从降级版本中恢复高质量图像内容,图像恢复在监视,计算摄影,医学成像和遥感等领域拥有众多应用。 最近,卷积神经网络(CNN)与传统的图像恢复任务方法相比取得了巨大的进步。 现有的基于CNN的方法通常以全分辨率或渐进式低分辨率表示形式运行。 在前一种情况下,获得了空间精确但上下文上不那么健壮的结果,而在后一种情况下,生成了语义上可靠但空间上不太准确的输出。 在本文中,我们提出了一种新颖的体系结构,其总体目标是通过整个网络维护空间精确的高分辨率表示,并从低分辨率表示接收强大的上下文信息。 我们方法的核心是包含几个关键元素的多尺度残差块:(a)并行多分辨率卷积流,用于提取多尺度特征;(b)跨多分辨率流的信息交换;(c)空间和渠道关注机
1
简要介绍了小波分析基本理论中的小波变换和小波包变换,重点论述了小波分析在图像降噪处理中的应用及其算法流程。在此基础上,利用Matlab R2007进行了图像去噪仿真测试,并对仿真结果进行了分析。结果表明,利用小波分析理论进行图像降噪处理,能够取得较好的降噪效果。
2023-02-07 17:01:33 241KB 数码影像
1
迭代自适应维纳滤波器的遥感图像降噪
2023-01-09 19:55:44 648KB 研究论文
1
基于MATLAB实现图像降噪好的程序
2022-11-11 18:23:46 102KB matlab 图像处理
1
pytorch版本的 ECNDNet,bug已经调好了,包含三种噪声下的模型,可直接使用,可对图片和视频去噪
2022-11-09 16:26:24 7.34MB 图像处理
1
提出了一种基于低秩矩阵逼近(LRMA)和加权核范数最小化(WNNM)正则化的去噪算法,以消除磁共振图像的Rician噪声。 该技术将来自嘈杂的3D MR数据的相似的非局部立方块简单地分组到一个补丁矩阵中,每个块按字典顺序矢量化为一列,计算该矩阵的奇异值分解(SVD),然后是LRMA的闭式解通过用不同的阈值硬阈值不同的奇异值来实现。 去噪块是从低秩矩阵的此估计中获得的,整个无噪声MR数据的最终估计是通过汇总彼此重叠的所有去噪示例块来建立的。 为了进一步提高WNNM算法的去噪性能,我们首先在两个迭代的正则化框架中实现了上述去噪过程,然后利用基于单像素补丁的简单非局部均值(NLM)滤波器来减少WNNM算法的去噪强度。均匀面积。 所提出的降噪算法与相关的最新技术进行了比较,并在合成和真实3D MR数据上产生了非常有竞争力的结果。
2022-10-25 15:46:10 896KB Non-local similarity; Low-rank matrix
1
为改善辐射图像质量,提出了一种基于Kalman滤波的降噪算法。该方法分析了辐射图像背景噪声的特征,在合理假设其为一阶Gaussian有色噪声的基础上改写了图像的观测方程;同时,采取NSHP(non-symmetrichalfplane)模型来构造图像的过程方程。然后使用Kalman滤波算法对图像进行滤波。实验结果表明,该方法有效减弱了辐射图像中混有的噪声,和传统滤波方法相比,更好地保持了图像的细节信息,体现了自适应的优点。这表明了Kalman滤波在辐射图像降噪处理中的潜力。
2022-09-03 12:09:21 353KB 自然科学 论文
1
一种基于运动补偿的3D视频降噪算法,龙红梅,田逢春,在视频图像降噪中,时域滤波比空域滤波在保护边缘和细节,提高PSNR方面更具有优势。根据此原理, 本文中提出了一种基于运动补偿的3D�
2022-08-21 22:39:14 535KB 视频图像降噪
1
随机森林图像matlab代码denoising-metrics_CVC2019 CVC2019论文的一个实现:Si Lu,使用MATLAB的“无参考图像降噪质量评估”() 参考 司璐,“无参考图像降噪质量评估”。 计算机视觉会议,CVC 2019,拉斯维加斯。 执照 仅用于学术用途。 保留本文作者的所有权利。 如果您有任何疑问,意见或建议,请通过或与Si Lu联系。 如果您使用这段代码,请引用我们的论文。 设置 编译:在文件夹核心中,运行 mex srMex.cpp 预先训练的模型(需要进行降噪质量评估。):访问以下载具有完整的预先训练的随机森林模型的代码。 演示版 usage: demo 图像去噪质量评估 usage: [score,psnr] = denoisingMetrics(noisyImgName, denoisedImgName, cleanImgName); input arguments: noisyImgName: the name of the noisy image to be denoised denoisedImgName: the name of the
2022-07-12 15:31:04 4.9MB 系统开源
1