内容概要:本文介绍了基于GADF(格拉姆角场)和Transformer的轴承故障诊断模型。首先解释了GADF的作用及其在捕捉轴承旋转角度变化中的重要性,然后探讨了Transformer如何通过自注意力机制对GADF生成的图像进行分析,从而实现故障识别和分类。文中还提及了小波变换(DWT)和短时傅立叶变换(STFT)两种额外的数据转换方法,它们能提供时间-频率双域表示和局部频率变化捕捉,丰富了数据表达方式。最后,文章展示了具体代码实现和验证过程,强调了模型的可调性和优化潜力。
适合人群:从事机械设备维护、故障诊断的研究人员和技术人员,尤其是对深度学习和信号处理有一定了解的人群。
使用场景及目标:适用于需要对复杂机械设备进行高效故障检测的工业环境,旨在提升设备运行的安全性和可靠性。
其他说明:附带完整的代码和说明文件,便于读者理解和复现实验结果。
2025-09-22 23:47:00
913KB
1