DCT数据压缩的基本思想是:由于DCT的能量聚集特性,对一幅图像进行离散余弦变换后,许多有关图像的重要可视信息都集中在DCT系数矩阵的左上角,也就是低频部分。DCT系数矩阵左上角第一个值称为DC系数,是整个矩阵的平均值,其余的称为AC系数,越靠近左上角对应的频率越低,越靠近右下角对应的频率越高。 在图像中,低频部分的信息量要大于高频部分的信息量,尽管低频部分的数据量比高频部分的数据量要小很多,例如删除掉占了50%存储空间的高频部分,信息量的损失可能还不到5%。因此,DCT数据压缩舍弃了高频系数,并对余下的系数进行量化减小数据量,以达到图像压缩的目的。 关于该资源的具体功能,可私信博主
DCT数据压缩的基本思想是:由于DCT的能量聚集特性,对一幅图像进行离散余弦变换后,许多有关图像的重要可视信息都集中在DCT系数矩阵的左上角,也就是低频部分。DCT系数矩阵左上角第一个值称为DC系数,是整个矩阵的平均值,其余的称为AC系数,越靠近左上角对应的频率越低,越靠近右下角对应的频率越高。 直接对整个图像进行2D-DCT变换的优点在于避免了分块效应,使得解压缩图像的保真度得到了保障,缺点在于计算复杂度高。 整图DCT变换流程 1. 直接对整幅图像进行DCT变换 2. 对DCT系数矩阵做不同程度的量化 3. 对量化后的DCT系数矩阵进行IDCT反变换得最终图像 4. 比较不同量化程度下还原图像MSE
2022-05-10 09:06:38 33KB matlab DCT图像压缩 图像压缩与还原
FFT将信息量集中在了矩阵的四个角上,这一特性导致了图像中信息量的分散,相比于将信息量集中在一个角的DCT变化,FFT变换的压缩性能较差。将系数矩阵转换为极坐标形式,可见中心附近较亮。中心附近为低频信息,距中心较远的为高频信息。但边缘附近也有较多的能量分布。 FFT变换有两种量化方法,第一种是对FFT系数矩阵进行线性量化(量化方式同整幅DCT变换方法的量化方式),第二种是对FFT系数矩阵进行非线性量化(以直角系系数矩阵中心为圆心进行量化)。 实验中对线性量化与非线性量化方式都进行了尝试,但因为线性量化会损失大量的频域信息,导致还原出的图像质量很差,在实际应用中不能采取该方式进行量化;而非线性量化可以极大的避免大量频域信息的损失,很好的符合了FFT系数矩阵中能量集中在四个角的特性,还原出的图像质量高,因此本报告中只选用非线性量化方式。 算法流程 1. 将图像进行FFT变换得到FFT系数矩阵。 2. 以FFT系数矩阵中心为圆心,分别以不同的半径将圆内系数置为零。 3. 将量化后的FFT系数矩阵进行IFFT变换还原图像。
2022-05-10 09:06:37 66KB matlab FFT图像压缩 图像压缩与还原