只为小站
首页
域名查询
文件下载
登录
网络拓扑图 拓扑 网络 RIP OSPF BGP
网络拓扑图是描述计算机网络中设备连接方式和结构的图形表示,它是网络设计和管理的重要工具。在互联网和企业内部网络中,网络拓扑图能够清晰地展示路由器、交换机、服务器以及其他设备间的物理连接和逻辑关系。通过网络拓扑图,我们可以直观地理解数据在网络中的传输路径,便于故障排查、性能优化以及安全监控。 RIP(Routing Information Protocol,路由信息协议)是一种古老的距离矢量路由协议,适用于小型网络。RIP基于跳数作为度量标准,限制了网络的规模,最大跳数为15跳。它使用了触发更新和周期性更新机制来传播路由信息,可能导致路由环路问题。为了避免这些问题,RIP引入了毒性逆转和水平分割等技术。 OSPF(Open Shortest Path First,开放最短路径优先)是链路状态路由协议,比RIP更适应大规模网络。OSPF通过泛洪LSA(Link State Advertisements)来建立全网的拓扑数据库,并使用Dijkstra算法计算最短路径树。OSPF支持VLSM(Variable Length Subnet Masking,可变长子网掩码)和CIDR(Classless Inter-Domain Routing,无类别域间路由),具备更快的收敛速度和更高的路由稳定性。 BGP(Border Gateway Protocol,边界网关协议)是用于AS(自治系统)之间的外部路由协议,是Internet上使用最广泛的路由协议之一。BGP主要用于互联网服务提供商(ISP)之间交换路由信息,它通过路径属性来决定最佳路由,支持多路径负载均衡和路由策略控制,能够处理大规模的路由表,对网络的扩展性和稳定性有着重要作用。 网络中使用RIP、OSPF和BGP的主要目的是实现路由选择,即确定数据包从源到目的地的最佳路径。这三种协议各有优势,RIP简单易用但不适用于大网络,OSPF适合企业级网络,而BGP则在互联网层面发挥关键作用。通过网络拓扑图,我们可以更好地理解这些路由协议在实际网络环境中的应用和相互作用,以便于网络规划和管理。提供的图片文件可能包含具体的网络拓扑结构,通过分析这些图像,可以进一步深入理解网络设计和路由协议的实施情况。
2025-12-13 22:58:24
568KB
网络
RIP
OSPF
1
"YOLOv8深度解析:热力图可视化技术下的网络特征逐层解析",YOLOv8热力图可视化每层网络特征 ,YOLOv8; 热力图; 可视化; 特征; 层网络; 特征图,YOLOv8网络特征热力图可视化
YOLOv8是近年来在计算机视觉领域中崛起的一个重要目标检测模型,它代表了You Only Look Once系列算法的最新进展。YOLOv8在目标检测任务中因其速度快、精度高而备受关注,特别是在实时系统和需要快速响应的应用场景中。文章标题所指的深度解析可能涉及了对YOLOv8架构的细致分解,包括其内部工作机制、特征提取流程,以及如何利用热力图技术来可视化网络在每层的特征表现。 热力图作为一种可视化技术,可以直观地展示网络在处理图像时对特定区域的关注程度。通过热力图,研究人员和开发者能够更加直观地理解网络是如何识别和定位图像中的物体的。在每层网络特征的逐层解析中,热力图可视化技术帮助我们清晰地看到模型在各个阶段的学习成果,例如哪些区域的特征被加强,哪些被弱化,以及这些变化是如何随着网络层次的加深而发生的。 文章可能详细探讨了热力图如何应用于YOLOv8模型,从最初的卷积层到后面的全连接层,每个层次的特征图是如何响应输入图像的。这种可视化不仅帮助理解模型的决策过程,而且对于调试和改进模型也非常有价值。例如,通过观察热力图可以发现哪些特征对于识别特定类别的物体至关重要,哪些特征可能是冗余的或者错误的,进而对模型进行优化。 此外,柔性数组这一概念可能在文章中扮演了某种角色,尽管它不是YOLOv8的直接组成部分。在计算机科学中,柔性数组是一种数据结构,它可以动态调整数组的大小以适应数据量的变化。尽管具体的实现细节没有在文件名称列表中提到,但它可能是用于优化某些操作,或者与热力图生成过程中的某些算法或数据处理有关。 在文件名称列表中,除了描述文章主题的文档文件外,还包含了一系列的.jpg图片文件。这些图片文件很可能包含了实验过程中的热力图样本,用于展示和分析YOLOv8网络在不同层次上对特征的处理。这些图像可以是文章中实际分析的案例,也可能用于说明某些特定的概念或模型行为。 文章的正文内容可能会包含以下几个方面的知识点: 1. YOLOv8模型结构的详细介绍,包括其创新之处与之前的版本相比。 2. 热力图可视化的原理及其在计算机视觉中的应用。 3. YOLOv8中热力图生成的过程,以及它是如何帮助解读模型特征提取的。 4. 层层解析YOLOv8网络的特征表现,包括对不同层次特征图的分析。 5. 通过实验数据展示YOLOv8在实际应用中的效果,并用热力图来验证模型的识别准确性。 6. 如何利用热力图进行模型的调优和优化。 7. 柔性数组在模型或可视化过程中的潜在作用及其技术细节。 由于文章内容丰富,以上仅是可能的知识点概述。具体的分析和解释需要通过阅读完整的文档内容来获得。
2025-11-17 18:42:09
1.05MB
柔性数组
1
SubGNN:子图神经网络(NeurIPS 2020)
子神经网络 NeurIPS 2020论文存储库: 作者: , ,, 要使用SubGNN,请执行以下操作: 安装环境 准备数据 在config.py修改PROJECT_ROOT 修改适当的config.json文件 训练和评估SubGNN 安装环境 我们提供了一个yml文件,其中包含SubGNN的必要软件包。 一旦安装了 ,就可以创建如下环境: conda env create --file SubGNN.yml 准备数据 通过(1)下载我们提供的数据集或按照prepare_dataset文件夹README中的步骤来为SubGNN准备数据,(2)生成合成数据集或(3)格式化您自己的数据。 真实数据集:我们将发布四个新的真实数据集:HPO-NEURO,HPO-METAB,PPI-BP和EM-USER。 您可以 从Dropbox下载这些文件。 您应该解压缩文件夹并将config.py的P
2025-10-21 11:52:49
87KB
embeddings
graph-neural-networks
Python
1
论文研究-一种基于图的网络拓扑概率故障定位方法.pdf
网络拓扑故障定位在现代网络管理中扮演着至关重要的角色。有效的故障定位方法可以显著提高网络的运维效率,减少故障排查的时间,从而降低由网络故障引起的经济损失和业务中断风险。本研究提出了一种基于无向图的网络拓扑概率故障定位方法,旨在利用概率理论来提高故障定位的准确性,以及通过有效的故障排除方法来提高网络性能和增强网络的可靠性。 在深入探讨这一主题之前,首先需要了解几个关键的网络拓扑概念。网络拓扑通常指的是网络中各节点以及连接这些节点的链路的物理或逻辑布局。拓扑结构对于网络的性能和可靠性都有着直接的影响,而对网络拓扑的发现和理解是实现故障定位的基础。 IP网络拓扑发现是指通过特定的算法或工具来获取网络中设备的IP地址、设备类型、接口信息以及它们之间的物理或逻辑连接关系。这一过程可以是被动的,即通过监控网络流量来实现;也可以是主动的,比如发送特定的查询或探测报文来收集拓扑信息。网络管理员通常利用这些信息来绘制网络的物理结构图或逻辑结构图,从而帮助诊断网络问题。 基于无向图的网络拓扑概率故障定位方法的核心思想是利用图论中的无向图模型来表示网络的拓扑结构。在这种模型中,网络中的设备和连接它们的链路被抽象为图的顶点和边。无向图意味着边不具有方向,即网络中的设备之间的连接是双向的。在这样的模型中,图的每个顶点代表一个网络设备,边代表设备间的物理或逻辑连接。这种表示方法简化了网络结构的描述,便于通过图论中的算法进行分析。 概率故障定位方法运用概率论的基本原理来处理网络中的不确定性和故障多发性。网络故障可能是由多种原因引起的,包括硬件故障、软件问题、配置错误或是外部攻击等。概率故障定位方法通过分析网络故障的历史数据和实时监控数据,结合网络的拓扑信息,计算出每个可能的故障点发生的概率。通过概率的高低来决定排查故障的优先顺序,从而提高故障定位的速度和准确性。 在具体实施过程中,这一方法需要收集和处理大量网络性能数据,分析数据中的异常模式,以及监测网络流量和设备状态的变化。利用这些数据,可以构建起一个网络性能的统计模型,并结合网络拓扑结构,推算出故障发生的概率。通过比较不同故障场景的概率,故障定位系统可以有效地识别出故障点,指导网络管理员迅速采取措施解决问题。 此外,随着人工智能技术的发展,基于机器学习的网络故障预测和定位技术也得到了长足的发展。这类技术可以处理更加复杂的网络环境,学习网络中故障发生的模式,提高故障预测的准确度,并可为概率故障定位提供数据支持和智能决策辅助。 本论文研究介绍的方法在理论上具有创新性,在实践中具有较高的应用价值。它不仅有助于提升网络运维的自动化水平,还为网络可靠性管理和故障预防提供了新的思路。尽管研究的实施可能面临许多挑战,包括收集准确的网络数据、模型的准确性校验和实际网络环境的适应性等问题,但这种基于概率理论和图模型的方法无疑为网络拓扑故障定位问题提供了一种有效的新途径。
2025-10-14 16:49:43
502KB
拓扑发现
无向图
拓扑故障定位
1
一种基于属性和图神经网络的推荐算法——本科生毕设.zip
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-04-24 12:46:52
4.19MB
毕业设计
课程设计
项目开发
资源资料
1
Dijkstra算法python实现,基于邻接矩阵及优先队列 能确定最短路径长度及最短路径上的节点
Dijkstra算法python实现,基于邻接矩阵及优先队列 不仅能够求解其实节点到各个节点的最短路径长度,而且并确定各条最短路径上的节点信息
2024-08-23 11:13:41
5KB
python
Dijkstra
图与网络
1
MSRC-9数据集 图神经网络
图神经网络GNN数据集,计算机视觉领域数据集,共有221张图,八分类,平均节点数为40,平均边数为97
2024-07-28 16:49:12
187KB
神经网络
数据集
图神经网络
深度学习
1
PTC-FM数据集 图神经网络
图神经网络(Graph Neural Networks, GNN)是深度学习领域中的一个重要分支,它专注于处理非欧几里得数据,如图结构数据。在本数据集“PTC-FM”中,我们聚焦于小分子的图表示和二分类任务。这个数据集包含349个图,每个图代表一个化学分子,其结构信息被抽象成节点和边的形式。平均每个图有14个节点,这通常对应于分子中的原子,而平均14条边则代表原子间的化学键。 图神经网络的工作原理是通过不断迭代地传播和聚合邻居节点的信息,从而对每个节点进行特征学习。在每一轮迭代(也称为消息传递层)中,每个节点的特征向量会与相邻节点的特征向量进行交互,然后更新自身的状态。这个过程可以理解为在图中传播信息,直到达到一个稳定状态或达到预设的迭代次数。通过对图中所有节点特征的汇总,可以得到整个图的全局表示,用于执行分类或其他下游任务。 对于小分子分析,GNN特别适合,因为它能捕获分子的拓扑结构和化学键信息。在PTC-FM数据集中,GNN模型可以学习识别分子结构与特定属性(例如,是否有毒性)之间的关系。二分类任务意味着模型需要区分两类不同的分子,比如有毒和无毒。 为了构建这样的模型,首先需要将分子结构数据转化为图的形式,其中节点代表原子,边代表化学键。然后,每个节点可以有初始特征,如原子类型,而边可能也有附加信息,如键的类型。在训练过程中,GNN模型会学习这些特征并利用它们进行分类。 在实际应用中,GNN模型的构建通常涉及以下步骤: 1. **数据预处理**:将分子结构数据转换为图表示,包括节点和边的初始化。 2. **定义GNN层**:设计消息传递函数和节点/图聚合函数。 3. **模型架构**:搭建多层GNN网络,并可能结合其他深度学习组件如全连接层。 4. **训练与优化**:通过反向传播算法更新模型参数,以最小化损失函数。 5. **评估与验证**:使用交叉验证或者独立测试集评估模型性能。 在这个数据集上,你可以尝试多种GNN变体,如Graph Convolutional Network (GCN)、Graph Attention Network (GAT) 或 Message Passing Neural Network (MPNN),并比较它们的性能。此外,可以考虑集成其他技术,如节点嵌入、图池化或图自编码器,以增强模型的表达能力和泛化能力。 PTC-FM数据集为研究和开发图神经网络提供了宝贵的资源,有助于推进化学信息学、药物发现和机器学习在物质科学领域的应用。通过深入理解和应用GNN,我们可以更好地理解和预测分子的性质,这对于新药研发、材料科学等领域具有重大意义。
2024-07-28 16:48:31
69KB
神经网络
数据集
图神经网络
机器学习
1
毕业设计:基于图神经网络的异构图表示学习和推荐算法研究.zip
【毕业设计:基于图神经网络的异构图表示学习和推荐算法研究】 本毕业设计主要探讨了图神经网络(GNN)在异构图表示学习和推荐系统中的应用。图神经网络是一种强大的机器学习模型,它能处理非欧几里得数据结构,尤其适用于社交网络、知识图谱和复杂网络等领域的分析。在异构图中,不同类型的节点和边共同构成了复杂的网络结构,这为理解和挖掘数据间的关系提供了新的视角。 一、图神经网络基础 1. 图神经网络的定义:GNN 是一种对图数据进行深度学习的方法,通过消息传递机制在节点之间传播信息,从而学习节点的嵌入表示。 2. 模型结构:GNN 包含多层神经网络,每层通过聚合邻居节点的信息更新当前节点的状态,直到收敛或达到预设层数。 3. 消息传递:GNN 的核心是消息传递函数,它负责将一个节点的特征向量传递给其相邻节点,同时接收来自邻居节点的信息。 二、异构图表示学习 1. 异构图的特性:异构图包含多种类型节点和边,每种类型都有不同的属性和交互模式。 2. 表示学习挑战:如何在异构环境中有效地捕获不同类型节点和边的特征并进行统一表示,是异构图学习的关键。 3. GNN 在异构图中的应用:通过设计适应异构图的GNN模型,如Heterogeneous Graph Neural Network (HetGNN)、Metapath2Vec等,可以处理节点和边的多样性,捕捉丰富的语义信息。 三、推荐算法 1. 推荐系统概述:推荐系统旨在预测用户可能感兴趣的内容,通过分析用户历史行为、兴趣偏好等数据来实现个性化推荐。 2. 基于图的推荐:将用户、物品等视为图中的节点,通过GNN学习节点间的关系,进而预测用户可能的评分或点击概率。 3. 异构图在推荐中的优势:能够捕获用户-物品、用户-用户、物品-物品等多类型关系,提升推荐的准确性和多样性。 四、项目实现 本设计提供了一个完整的实现框架,包括数据预处理、模型训练、评估和推荐结果生成等环节。源码经过严格测试,确保可直接运行,为其他研究者或学生提供了参考和实践平台。其中,"demo"可能是演示代码或样例数据,帮助理解模型的运行流程和效果。 五、互动支持 作者承诺对下载使用过程中遇到的问题及时解答,保证良好的使用体验。这种互动交流有助于深化对项目的理解,提高问题解决能力。 本毕业设计深入研究了GNN在异构图表示学习和推荐算法中的应用,不仅涵盖了理论知识,还提供了实际操作的代码,对于学习和研究图神经网络在推荐系统中的应用具有重要价值。
2024-07-28 09:14:58
579KB
毕业设计
1
图神经网络学习资料、ppt、论文
入门图神经网络的好资源,了解GNN的基本原理,训练方法,以及其各种变体的应用。通俗易懂,讲解全面。入门图神经网络的好资源,了解GNN的基本原理,训练方法,以及其各种变体的应用。通俗易懂,讲解全面。
2024-05-22 19:41:49
47.73MB
图神经网络
神经网络
深度学习
1
个人信息
点我去登录
购买积分
下载历史
恢复订单
热门下载
JPEG的Matlab实现
数据结构课后习题答案
得到品控手册7.0.pdf
2010年-2020中国地面气候资料数据集(V3.0)
PSO-LSSVM的MATLAB代码.rar
OLED显示温度和时间-STM32F103C8T6(完整程序工程+原理图+相关资料).zip
MATLAB之LSTM预测
中国地面气候资料日值数据集(V3.0)-201001201912.rar
PLECS中文手册.pdf
2019西门子杯六部十层电梯群控参考程序.zip
IEEE33节点配电网Simulink模型.rar
刚萨雷斯《数字图像处理》第四版答案.pdf
YOLOv5 人脸口罩图片数据集
IBM.ILOG.CPLEX.Enterprise.Server.v12.10.0.Win64.rar CPLEX下载
倒立摆的模糊控制(基于simulink仿真,适合初学者).rar
最新下载
软件开发文档模板(全套)
telnet客户端源码
delphi验证码识别,能够自己学习,绝对好用,没有任何第三方控件和dll
USB 2.0规范(英文版).pdf
OTN标准G.798
麒麟云打印服务端1.1.3
Win在线播放器N5-1214安装包.exe
qt-everywhere-opensource-src-5.7.1.tar.gz
基于TSMC 65nm工艺的射频集成电路(RFIC)设计实战指南:LNA、MIXER、PA详解
Webgame银河帝国OGameCN v1.4 bulid 090109.rar
其他资源
QT打开PDF的Demo(请看资源描述)
机器学习常用数据集(iris、wine、abalone)
matlab潮流计算程序
程控衰减器PE4302 可实现0-31.5任意步进
IP修改工具
普通发票 html css写的
DevExpress
神经电压缩感知matlab
头脑风暴优化算法代码
数学模型-电路阻塞管理模型
Absolute FreeBSD, 3rd Edition
小学数学基础知识整理精品.pdf
MATLAB工具箱大全-数字图像处理工具箱DIPUM Toolbax V1.1.3
windows 32位 CMake3.3.txt
tensorflow-1.14.0-cp37-cp37m-win_amd64.zip
深入理解CNN
OpenCV+Java+拍照+保存
ComputerNetworking(Kurose)PPT中文版
Git-1.7.11-preview20120710
Java经典入门教程pdf完整版