基于卷积神经网络-双向长短期记忆网络(CNN-BILSTM)多维时间序列预测,CNN-BILSTM回归预测,MATLAB代码。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-10-14 09:49:18 62KB 网络 网络 matlab
1
在机器学习领域,回归预测是一种常见且重要的任务,主要用于预测连续数值型的输出。在这个案例中,我们将探讨如何利用一些基础的机器学习模型来解决材料能耗问题,即预测材料生产或加工过程中的能量消耗。这有助于企业优化能源利用,降低成本,并实现更环保的生产流程。 1. **线性回归**:线性回归是最基础的回归模型之一,通过构建一个最佳的直线关系来预测目标变量。在材料能耗问题中,可以考虑输入参数如材料类型、重量、加工条件等,线性回归模型将找出这些参数与能耗之间的线性关系。 2. **岭回归**:当数据存在多重共线性时,线性回归可能表现不佳。岭回归是线性回归的改进版本,通过引入正则化参数来缓解过拟合,提高模型稳定性。 3. **lasso回归**:Lasso回归(Least Absolute Shrinkage and Selection Operator)在正则化中采用L1范数,不仅可以减少过拟合,还能实现特征选择,即某些不重要的特征系数会被压缩至零,从而达到特征筛选的目的。 4. **决策树回归**:决策树模型通过一系列基于特征的“如果-那么”规则进行预测。在材料能耗问题上,决策树能处理非线性关系,易于理解和解释,适合处理包含类别和数值特征的数据。 5. **随机森林回归**:随机森林是多个决策树的集成,每个决策树对目标变量进行预测,最后取平均值作为最终预测结果。随机森林可以有效降低过拟合风险,提高预测准确度,同时能评估特征的重要性。 6. **梯度提升回归**(Gradient Boosting Regression):这是一种迭代的增强方法,通过不断训练新的弱预测器来修正前一轮的预测误差。在材料能耗问题中,梯度提升能逐步优化预测,尤其适用于复杂数据集。 7. **支持向量回归**(Support Vector Regression, SVR):SVR使用支持向量机的概念,寻找一个最能包容所有样本点的“间隔”。在处理非线性和异常值时,SVR表现优秀,但计算成本较高。 8. **神经网络回归**:神经网络模拟人脑神经元的工作原理,通过多层非线性变换建模。深度学习中的神经网络,如多层感知器(MLP),可以捕捉复杂的非线性关系,适应材料能耗问题的多元性和复杂性。 在实际应用中,我们需要对数据进行预处理,包括缺失值处理、异常值检测、特征缩放等。然后,使用交叉验证进行模型选择和调参,以找到最优的模型和超参数。评估模型性能,通常使用均方误差(MSE)、均方根误差(RMSE)、R²分数等指标。在模型训练完成后,可以将模型部署到生产环境中,实时预测新材料的能耗。 总结起来,解决材料能耗问题涉及多种机器学习模型,每种模型都有其优势和适用场景。根据数据特性以及对模型解释性的需求,选择合适的模型并进行适当的调整,将有助于我们更准确地预测材料的能耗,进而优化生产流程。
2024-10-12 15:56:04 5.35MB
1
CNN-GRU多变量回归预测(Matlab) 1.卷积门控循环单元多输入单输出回归预测,或多维数据拟合; 2.运行环境Matlab2020b; 3.多输入单输出,数据回归预测; 4.CNN_GRUNN.m为主文件,data为数据; 使用Matlab编写的CNN-GRU多变量回归预测程序,可用于多维数据拟合和预测。该程序的输入为多个变量,输出为单个变量的回归预测结果。主要文件为CNN_GRUNN.m,其中包含了需要处理的数据。 提取的 1. 卷积门控循环单元(Convolutional Gated Recurrent Unit,CNN-GRU):一种深度学习模型,结合了卷积神经网络(Convolutional Neural Network,CNN)和门控循环单元(Gated Recurrent Unit,GRU)的特性,用于处理时序数据和多维数据的回归预测或拟合任务。 卷积门控循环单元(CNN-GRU)是深度学习中的一种模型,用于处理具有时序关系或多维结构的数据。相比于传统的循环神经网络(Recurrent Neural Network,RNN),CNN-GRU在处理长期依赖关
2024-09-09 14:11:57 493KB matlab
1
基于粒子群算法(PSO)优化混合核极限学习机HKELM回归预测, PSO-HKELM数据回归预测,多变量输入模型。 优化参数为HKELM的正则化系数、核参数、核权重系数。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-08-14 16:10:01 36KB
1
《基于EMD-GWO-SVR的时间序列预测方法详解》 时间序列预测是数据分析中的一个重要领域,广泛应用于经济、金融、气象、工程等多个行业。本文将深入探讨一种利用经验模态分解(Empirical Mode Decomposition,简称EMD)、灰狼算法(Grey Wolf Optimizer,简称GWO)以及支持向量回归(Support Vector Regression,简称SVR)相结合的方法来对时间序列进行预测。这种方法充分利用了各自算法的优势,提高了预测的准确性和稳定性。 一、经验模态分解(EMD) EMD是一种数据驱动的信号处理技术,它能够将非线性、非平稳的时间序列分解为一系列简单、局部可描述的内在模态函数(Intrinsic Mode Function,简称IMF)。EMD通过对原始信号进行迭代处理,自适应地分离出不同频率成分,将复杂信号转化为多个具有物理意义的分量:高频分量、低频分量和残差。这种方法无需事先假设信号模型,对于复杂数据的处理具有显著优势。 二、灰狼算法(GWO) 灰狼算法是一种基于动物社会行为的全局优化算法,模拟了灰狼群体在捕猎过程中的合作和竞争行为。在预测问题中,GWO可以寻找最优参数,以最大化或最小化目标函数。在这个过程中,灰狼群体中的阿尔法狼、贝塔狼和德尔塔狼分别代表最优解、次优解和第三优解,通过调整这些狼的位置来不断优化参数,最终达到全局最优。 三、支持向量回归(SVR) 支持向量机(SVM)在分类任务中表现出色,而其拓展形式支持向量回归则用于回归问题。SVR通过构建一个最大边距超平面,使得数据点尽可能接近这个超平面但不超过预设的误差边界。在预测时,SVR寻找能够最小化预测误差且同时满足边界条件的最优决策面。在本方法中,GWO用于优化SVR的参数,如核函数类型、惩罚参数C和核函数参数γ,以提高预测精度。 四、方法整合与应用 在“EMD-GWO-SVR”方法中,首先对时间序列进行EMD分解,得到不同频率的分量;然后使用GWO优化SVR的参数,构建预测模型;将EMD分解后的各分量作为输入,通过训练好的SVR模型进行预测。这种方法结合了EMD的自适应分解能力、GWO的全局优化能力和SVR的高效预测能力,尤其适用于处理非线性、非平稳的时间序列预测问题。 在MATLAB环境下,我们可以使用提供的代码文件“GWO_SVR.m”和“EMD_GWO_SVR.m”来实现这一预测流程。此外,“gp.xls”可能包含的是待预测的数据样本,而“package_emd”和“libsvm-免编译”则是用于EMD分解和SVR建模的相关库文件,简化了算法的实现步骤。 总结,EMD-GWO-SVR方法是将多学科理论融合应用的典范,为复杂时间序列的预测提供了新的思路。其有效性和实用性已在多个领域的实际问题中得到了验证,未来有望在更广泛的场景下发挥重要作用。
2024-08-08 14:48:56 1.11MB
1
本文将详细讲解基于双向长短期记忆网络(BILSTM)的数据回归预测以及多变量BILSTM回归预测在MATLAB环境中的实现。双向LSTM(Bidirectional LSTM)是一种深度学习模型,特别适合处理序列数据,如时间序列分析或自然语言处理。在MATLAB中,我们可以利用其强大的数学计算能力和神经网络库来构建BILSTM模型。 我们要理解BILSTM的工作原理。BILSTM是LSTM(Long Short-Term Memory)网络的扩展,LSTM能够捕捉长距离的依赖关系,而BILSTM则同时考虑了序列的前向和后向信息。通过结合这两个方向的信息,BILSTM可以更全面地理解和预测序列数据。 在描述的项目中,我们关注的是数据回归预测,这是预测连续数值的过程。BILSTM在这里被用于捕捉输入序列中的模式,并据此预测未来值。多变量BILSTM意味着模型不仅考虑单个输入特征,而是处理多个输入变量,这对于处理复杂系统和多因素影响的情况非常有用。 评价指标对于评估模型性能至关重要。在本项目中,使用的评价指标包括R²(决定系数)、MAE(平均绝对误差)、MSE(均方误差)、RMSE(均方根误差)和MAPE(平均绝对百分比误差)。R²值越接近1,表示模型拟合度越高;MAE和MAPE是衡量平均误差大小的,数值越小越好;MSE和RMSE则反映了模型预测的方差,同样,它们的值越小,表示模型预测的精度越高。 在提供的MATLAB代码中,我们可以看到以下几个关键文件: 1. `PSO.m`:粒子群优化(Particle Swarm Optimization, PSO)是一种全局优化算法,可能在这个项目中用于调整BILSTM网络的超参数,以获得最佳性能。 2. `main.m`:主程序文件,通常包含整个流程的控制,包括数据预处理、模型训练、预测及性能评估。 3. `initialization.m`:初始化函数,可能负责设置网络结构、随机种子或者初始参数。 4. `fical.m`:可能是模型的损失函数或性能评估函数。 5. `data.xlsx`:包含了输入数据和可能的目标变量,是模型训练和测试的基础。 通过阅读和理解这些代码,我们可以学习如何在MATLAB中搭建和训练BILSTM模型,以及如何使用不同的评价指标来优化模型。这个项目对于那些想在MATLAB环境中实践深度学习,特别是序列数据分析的开发者来说,是一份宝贵的资源。
2024-08-06 17:32:56 34KB 网络 网络 matlab
1
基于注意力机制attention结合长短期记忆网络LSTM多维时间序列预测,LSTM-Attention回归预测,多输入单输出模型。 运行环境MATLAB版本为2020b及其以上。 评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高,方便学习和替换数据。
2024-07-26 16:22:44 63KB 网络 网络 matlab lstm
1
## 1.前馈神经网络 一种单向多层的网络结构,信息从输入层开始,逐层向一个方向传递,一直到输出层结束。前馈是指输出入方向是前向,此过程不调整权值。神经元之间不存在跨层连接、同层连接,输入层用于数据的输入,隐含层与输出层神经元对数据进行加工。 ## 2.反向传播算法 (英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。 ## 3.BP神经网络: 也是前馈神经网络,只是它的参数权重值是由反向传播学习算法调整的。 ## 4.总结: 前馈描述的是网络的结构,指的是网络的信息流是单向的,不会构成环路。它是和“递归网络”(RNN)相对的概念;BP算法是一类训练方法,可以应用于FFNN,也可以应用于RNN,而且BP也并不是唯一的训练方法,其
2024-07-01 20:45:29 17KB 神经网络 matlab
1
直接替换数据即可使用,不需要任何基础 代码注释非常详细,可供学习 本代码为优质代码,丰富齐全,包含内容有: (1)分节设置,注释非常详细,可供学习。 (2)设置隐含层的寻优过程,根据输入自动确定隐含层节点范围,并进行误差寻优,最终获得最佳隐含层节点,减少实验过程。 (3)作图精细,图像结果齐全。 (4)各误差结果指标齐全,自动计算误差平方和SSE、平均绝对误差MAE、均方误差MSE、均方根误差RMSE、平均绝对百分比误差MAPE、预测准确率、相关系数R等指标,结果种类丰富齐全。 (5)最终打印显示测试集的结果。
2024-07-01 19:22:27 50KB 神经网络 matlab
1
灰狼算法(GWO)优化回升状态网络ESN回归预测,GWO-ESN回归预测模型,多输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。 灰狼算法(GWO)优化回升状态网络ESN回归预测,GWO-ESN回归预测模型,多输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-14 22:49:20 37KB 网络 网络