什么是PID闭环控制系统?举个生活中的例子,我们所乘坐的动车,在即将到达站点的时候会切断动力,凭借惯性进入月台,如果火车在切断动力的时候时速是100km/h并且距离月台是1KM,那么这个100比1就是比例P的含义,P越大,他在站前开始滑行的速度也就越快,快的话也就是进入站台的时间比较短,但是过快也就意味着,惯性太大可能冲下月台,这也就不得不经行倒车,但是因为P过大,倒车以后的滑行同样会使得火车到过头,这样一来,就形成了一个反复前行后退的震荡局面,而P设置小了,进站的速度也就变得缓慢,进站的时间也就会变得越长,所以设置一个合适的P是PID的首要任务,由于P是一个固定值,如果将火车的速度与月台的距离用一个坐标理想化的表现出来的话,不考虑其他外力,那就是一条直斜线,越陡表示进站的时间越短。
2023-01-04 10:32:38 106KB PID调参 穿越机 四轴无人机
1
项目简介: 本项目是基于IDT无线充电15W模块充电模块与四轴F450无人机设计的。通过在无人机机架上搭载无线充电模块接受端,当检测到电压较低时触发充电请求,控制无人机到达充电发射端附近时,由超声波模块进行检测并降落完成充电。 硬件说明: 硬件设计上包括主控模块,电调,无线遥控接收器,超声波模块和无线接收转换器等。 硬件框图如下图1所示: 主控模块可由APM2.8模块或自助研发的STM32飞控,本项目主要使用自研STM32飞控,主控芯片为STM32F207,主要对无人机进行数据分析及控制,同时对机体电池电量进行采集及判断。原理图如下图2所示。 超声波模块是采用外购的KS103模块,如图3所示,测距最大距离8米,盲区为最小1cm之内。测量精度平均3mm,最高达1mm.而且相当灵敏。具有目前其他同类超声波模块产品所无法达到的性能优势和质量保障。测量距离,温度,光强,三合一功能。适用于机器人准确测距避障,扑火机器人,趋光机器人,四轴飞控定高,工业测距,身高体重仪测量身高,以及安防等领域。本作品是利用模块定高功能的同时也给无线充电作为引导充电指示,对于飞控上的接口如图4所示。 供电系统分为12V转5V,12V转3.3V,皆采用开关电源进行稳压给各项子功能电路使用,如图5所示 在机体上,需要对无线充电电池电压进行检测并判断,所以板子上了一个检测和判断电路,如图6所示 软件说明: 软件使用了MDK4.74平台对STM32F207进行开发和代码编译下载,手机使用自开发APP与蓝牙模块进行通信,相关文档资料和程序代码上传在附件。 在实际调试过程中我们发现不同的姿态解算,数据融合方法对飞行器的稳定性的影响很大,我们使用了Mahony四元数解算。四轴姿态的表示可以用欧拉角,也可以用四元数。姿态检测算法作用就是将加速度计、陀螺仪,磁力计的测量值解算成姿态,进而作为系统的反馈量。在获取传感器值之前需要对数据进行滤波,滤波算法主要是将获取到的陀螺仪和加速度计的数据进行去噪声及融合,得出正确的角度数据(欧拉角或四元数),主要采用互补滤波或者卡尔曼滤波。 无线充电是通过主控判断电池电量低于设定值之后提醒飞控手后飞到地面充电发射端附近,通过检测地面超声波发射器的位置进行左右对准后下降充电。 演示效果: 无人机整体实物图 无人机运行工作图 无线充电模块安装图 附件内容截图: 【转载自电子发烧友】
2021-12-28 11:55:38 6.76MB 无线充电 四轴 无人机 四轴无人机
1
四轴无人机完整设计方案概述: 四轴无人机设计是无人飞行器(UAV)的流行设计。它包括一个飞行控制器和4个电子速度控制器(ESC),每个电机一个。飞行控制器配备一个无线电,用于接收飞行员和惯性测量单元(IMU)发出的飞行命令。IMU通过内置的加速度传感器、陀螺仪,有时还包括磁力计和GPS接收器,来提供汽车自动稳定所需的信息(如速度和方向)。该参考设计将4个独立的ESC板合为一个,通过一个Kinetis KV4x或Kinetis KV5x MCU控制,能够驱动4个无刷直流电机。该解决方案的每个逆变器还配有一个GD3000预驱动器,进一步增强了功能。GD3000预驱动器能够仅驱动N沟道MOSFET,实现更高效率。 四轴无人机视频演示链接:https://www.nxp.com/zh-Hans/video/the-hills-are-alive-with-the-sound-of-...-drone-uavs-based-on-kinetis-v-series-arm-cortex-m7-mcus:KV-Drone-Demo 特性一个Kinetis KV4x或Kinetis KV5x MCU能驱动电子速度控制器的4个电机。 采用FreeMASTER运行时调试工具,更容易进行调试和实时控制 软件功能包括诊断、记录和根据电流消耗估算剩余飞行时间等 配套的软件和工具面向FRDM-GD3000EVB的Freedom配件板(FRDM-PWRSTG) 面向GD3000 - BLDC电机预驱动器的Freedom扩展板(FRDM-GD3000EVB) 支持的器件KV5x: Kinetis KV5x-240 MHz,电机控制和功率变换,以太网微控制器(MCU),基于ARM:registered: Cortex:registered:-M7内核 KV4x: Kinetis KV4x-168 MHz,高性能电机 / 功率变换微控制器(MCU),基于ARM:registered: Cortex:registered:-M4内核 GD3000: 3相无刷电机前置驱动器
1
学习四轴飞行器的设计
2021-09-15 19:43:09 4.94MB 四轴 无人机
1
STM32F103和STM32F407驱动MPU6050,参考正点原子例程,使用STM32CubeMX配置基础代码,程序简洁高效,有模拟I2C和硬件I2C两种方式,都是调试好的,接上单片机引脚就可以使用。程序只显示欧拉角,可以在串口显示欧拉角数据,上位机使用的是GYv3-1显示姿态数据,用户可以自己配置串口传输帧格式,使用匿名上位机或其他的上位机显示。
2021-07-17 14:02:05 108.53MB STM32 四轴无人机 陀螺仪 STM32CubeMX
1
随着机器视觉技术的成熟发展,无人机搭载视觉模块进行巡线成为技术热点,设计了以STM32为主控芯片,在拟定实验环境下采用四轴无人机设计完成其自主巡线、视觉跟随等功能。通过视觉模块OpenMV实现巡线过程中的线检测、点检测,在进行线检测的同时完成对二维码、条形码的扫描;采用姿态解算、融合算法实现无人机在自主巡线过程中的姿态控制。实验结果表明,在自主巡线过程中,无人机对二维码、条形码识别率高,线与跟随点的切换稳定。
1
设计一款基于STM32四轴飞行器,设计四轴飞行器包括IMU姿态解算,自稳控制,定高自动控制等,达到给他人进行稳定二次开发的目的,降低学习无人机门槛,提高无人机在国内的影响力度,让更多的人认识了解无人机学习无人机。 主要器件: STM32F407VGT6 ICM20602 HMC5983 MS5611 0603电阻 0603电容 TPS5430 15uH功率电感。 作品简介: 在传统飞控上,我设计了利用硅胶球连接上下层PCB的方式来实现传感器减震的功能,有效降低了飞机振动对传感器数据产生的噪声。 可以继续利用研发的无人机进行二次开发的利用。比如无人机运载货物,无人机农业。无人机观察。 四轴飞行器具备VTOL(Vertical Take-Off and Landing,垂直起降)飞行器的所有优点,又具备无人机的造价低、可重复性强以及事故代价低等特点,具有广阔的应用前景。它是无人飞行器(UAV)的一种特殊机型,其具有十字排列的四个螺旋桨方便起飞与控制,在低空低速状态,可以在狭小的空间里执行任务。与其他无人机比较,由于结构简单,方便携带且维护成本低。无人自主飞行平台能够自主飞行并完成相应任务,与通用有人飞机相比,其造价低廉,可维护性,使用费用都具有明显优势。在近年来的历次战争中,发挥着重要作用,在民用方面与救灾领域运用前景广阔,例如无人机可在发生灾害后及时实施监控灾情,对救灾和灾害处理产生有益影响。因此对于四轴飞行器的研究具有重大的现实意义。 系统构架图: 硬件部分的描述: STM32F407VGT6作为主控MCU。 电源部分:MCU我采用2M开关频率的TPS62162保证了MCU的电源的稳定性,ICM20602,HMC5983采用3.3V LDO供电,MS5611根据数据手册采用3V LDO稳压芯片进行供电保证芯片数据的低噪声。TJA1050采用5V供电。 传感器部分:ICM20602六轴传感器芯片通过数据滤波处理把三轴陀螺仪数据和三轴加速度数据以及HMC5983三轴磁力计数据,MS5611气压计数据引入EKF进行IMU姿态解算。 扩展存储器:WQ25Q32BV用来存储传感器矫正数据。TF卡用来存储飞机飞行记录数据。 灯光模块:我采用3个SOT23-3封装的MOS管进行开关控制,与MCU隔离电源。 遥控器电路:采用传统的DBUS遥控器反向电路。 材料清单: MCU:STM32F407VGT6 6轴传感器:ICM20602 磁力计传感器:HMC5983 气压计传感器:MS5611 电源稳压芯片:TPS62162 LDO:ME6219C33M5G和ME6219C30M5G 扩展ROM存储器:TF卡和SPI FLASH 作品演示: 【转载自立创社区】
2021-05-12 19:25:00 16.68MB 四轴 电路方案
1
匿名拓空者飞控代码
2021-03-08 14:05:54 14.65MB 单片机 四轴无人机
1
无名飞控代码
2021-03-08 11:02:16 4.48MB 程序单片机 四轴无人机
1