针对现有的助听器语音增强算法在非平稳噪声环境下,残留大量背景噪声的同时还引入了“音乐噪声”,致使增强语音可懂度和信噪比不理想等问题。提出了一种基于噪声估计的二值掩蔽语音增强算法,该算法利用人耳听觉感知理论,结合人耳的听觉特性和耳蜗的工作机理。采用最小值控制递归平均(Minima-Controlled Recursive Averaging,MCRA)算法获得估计噪声和初步增强语音;将估计噪声和初步增强语音分别通过可以模拟人工耳蜗模型的gammatone滤波器组进行滤波处理,得到各自的时频表示形式;利用人耳的听觉掩蔽特性,计算含噪语音在时频域的二值掩蔽;利用二值掩蔽得到增强语音。实验结果表明:该算法很大程度上去除了谱减法引入的“音乐噪声”,与基于MCRA谱减法相比,增强语音的语言可懂度指数(Speech Intelligibility Index,SII)、主观语音质量评估(Perceptual Evaluation of Speech Quality,PESQ)和信噪比(Signal to Noise Ratio,SNR)都得到了提高。
2023-04-17 09:04:31
780KB
论文研究
1