同步定位与地图构建(SLAM)是实现机器人自主定位的核心问题之一,Rao-Blackwellised粒子滤波器(RBPF)作为一种SLAM定位的有效方法,被广泛应用在实时定位领域中,但由于其随着粒子数目的增加会频繁重采样从而导致粒子退化问题。为了解决该问题,改善SLAM性能,提出了一种基于改进小生境遗传优化的RBPF SLAM算法INGO-RBPF,采用改进的Rao-Blackwellised粒子滤波器解决SLAM路径估计问题,采用扩展卡尔曼滤波器解决SLAM地图估计问题。最后通过MATLAB仿真表明INGO-RBPF算法具有较高的估计精度和稳定性,抗干扰能力较强,定位较准确,比较适合应用在SLAM实时定位中。
1