基于MATLAB的隔离型DC DC变换器系统设计:单端反激技术指标与仿真程序整合方案,基于MATLAB仿真的单端反激隔离型DC-DC变换器系统设计与技术指标详解,基于MATLAB的单端反激——隔离型DC DC变器系统设计 本设计包括设计报告,仿真程序。 技术指标 输入电压、输出电压、输出功率、纹波系数、开关频率见下图 ,MATLAB; 单端反激; 隔离型DC DC变换器; 系统设计; 设计报告; 仿真程序; 技术指标; 输入电压; 输出电压; 输出功率; 纹波系数; 开关频率,MATLAB设计的隔离型DC-DC变换器系统方案
2025-03-29 19:42:50 1.49MB 数据结构
1
MATLAB Simulink R2015b下的SEPIC变换器仿真模型:涵盖开环与闭环控制,SEPIC:基于MATLAB Simulink的SEPIC变器仿真模型,包含开环控制和闭环控制两种控制。 仿真条件:MATLAB Simulink R2015b ,核心关键词:SEPIC; MATLAB Simulink; SEPIC变换器仿真模型; 开环控制; 闭环控制; MATLAB Simulink R2015b。,MATLAB Simulink下的SEPIC变换器:开环与闭环控制仿真模型 SEPIC(单端初级电感转换器)变换器是一种直流-直流转换器,它可以提供升压(Boost)、降压(Buck)或升降压(Buck-Boost)转换功能。在电子电力系统中,SEPIC变换器因其能够在同一电路中实现不同模式的电压转换而广受欢迎。它特别适用于那些需要稳定输出电压的场合,例如在电池供电系统中。 MATLAB Simulink是一个集成的仿真和模型设计工具,广泛用于工程领域,尤其是在信号处理和控制系统设计中。它允许工程师通过拖放的方式快速构建复杂系统的仿真模型。R2015b是该软件的一个版本,提供了多种功能增强和性能优化。 在SEPIC变换器的仿真模型中,可以实现开环和闭环控制两种控制方式。开环控制意味着控制过程不依赖于输出电压或电流的反馈,通常是预先设定的控制策略。而闭环控制则依赖于反馈,能够根据输出的实际值动态调整控制参数,从而提供更稳定和精确的控制效果。在电力电子领域,闭环控制通常是更受欢迎的选择,因为它可以有效提高系统的响应速度和稳定性。 仿真技术对于电力电子转换器的设计和分析非常重要。通过仿真,可以在不实际搭建电路的情况下测试电路设计的可行性,分析电路的性能,并优化设计参数。仿真技术可以帮助工程师节省成本,缩短开发周期,并减少实验过程中的风险。 本次提供的文件列表包含了与SEPIC变换器相关的多个文档和图片,这些文件可能包含了变换器的工作原理、性能分析、设计指南以及仿真模型的构建和测试过程。通过这些文件,可以深入学习和理解SEPIC变换器的设计方法以及如何运用MATLAB Simulink进行有效的仿真分析。 此外,文件中提到的“istio”标签可能意味着这些内容与云原生服务网格Istio有关。虽然这个标签与SEPIC变换器直接相关性不大,但Istio作为一个开源服务网格,用于连接、保护和管理微服务,可能在电力电子领域的仿真工具或管理系统中有所应用,例如在仿真模型的远程部署和管理等方面。 文件列表中包含的图片文件(1.jpg、2.jpg)可能是为了直观展示SEPIC变换器的工作原理或者仿真模型的结构设计。而包含的文档和文本文件则可能包含了对变换器技术的深入分析、控制策略的讨论以及仿真实验结果的记录。 这个文件集合为读者提供了一个全面了解和学习SEPIC变换器仿真模型的资源。通过阅读这些文件,不仅能够掌握变换器的设计和控制原理,还能够学会如何使用MATLAB Simulink这一强大的仿真工具来实现高效的设计验证和性能优化。
2025-03-29 13:39:24 317KB istio
1
基于模型预测控制的储能双向DCDC变换器仿真研究:模型构建、功能实现与结果分析,基于模型预测控制的储能双向DCDC变换器仿真研究:仿真模型、实现与结果展示,模型预测控制MPC的储能双向DCDC变器 仿真展示为储能双向DCDC变器,采用模型预测电流控制。 仿真模型包括:蓄电池模型、双向DCDC变器主电路、下垂控制、模型预测电流控制(fcn代码实现)。 结果如图所示,跟踪期望能力强,功能实现完整。 文件包括: [1]仿真模型 [2]相关参考文献。 ,模型预测控制MPC;储能双向DCDC变换器;仿真展示;蓄电池模型;主电路;下垂控制;fcn代码实现;跟踪期望能力强;功能实现完整;相关参考文献。,模型预测控制MPC在储能双向DCDC变换器中的应用及仿真研究
2025-03-29 13:10:15 2.05MB css3
1
基于MATLAB Simulink的双环控制DC DC变换器模型及性能比较分析,并附带相应结构电压电流控制的参考实验与论述。,MATLAB Simulink中两相交错并联双向DC-DC变换器:电压电流双闭环控制仿真模型研究及对比分析,MATLAB Simulink两相交错并联双向DC DC变器电压电流双闭环控制仿真模型 附参考文献 两相交错并联buck boost变器仿真 采用4mos结构,模型内包含单电压环开环控制,单电流环闭环控制(比例积分+前馈),电压电流双闭环控制(比例积分+前馈)三种控制方式,可以对比各种控制效果,三种方式中,双环控制模式的电感电流均流效果好,输出波形好,电压纹波小。 357 ,核心关键词:MATLAB; Simulink; 两相交错并联; 双向DC-DC变换器; 电压电流双闭环控制; 仿真模型; 比例积分控制; 前馈控制; 均流效果; 输出波形; 电压纹波。,基于MATLAB Simulink的DC-DC变换器双环控制仿真模型对比研究
2025-03-26 23:34:35 3.31MB
1
### LLC谐振变换器的理论分析与最优化设计 #### 一、引言 随着电力电子技术的发展,电源转换效率及功率密度成为衡量电源设备性能的重要指标。LLC谐振变换器作为一类高效的直流到直流(DC/DC)转换器,在工业应用中展现出独特的优势。本文将对LLC谐振变换器进行深入的理论分析,并探讨其实现最优化设计的方法。 #### 二、LLC谐振变换器的基本原理 ##### 2.1 工作原理简介 LLC谐振变换器是一种采用谐振网络来实现能量传输的DC/DC转换器。它由一个开关单元、一个LC谐振网络和一个整流输出单元组成。在工作过程中,通过控制开关单元的工作频率,使谐振网络在特定条件下发生谐振,从而达到高效能量传输的目的。 ##### 2.2 谐振条件分析 为了使LLC谐振变换器高效运行,需要满足特定的谐振条件。具体来说: - **谐振频率**:变换器的工作频率应接近其固有谐振频率,即当输入电压和负载变化时,工作频率能够自动调节至谐振频率附近。 - **软开关条件**:为了减少开关损耗,开关管需在零电压状态下开通,在零电流状态下关断,即实现ZVS(Zero-Voltage Switching)和ZCS(Zero-Current Switching)。 #### 三、理论分析 ##### 3.1 模型建立 建立准确的数学模型是进行理论分析的基础。对于LLC谐振变换器而言,需要考虑的因素包括开关管、谐振电感、谐振电容等元件的参数及其相互作用关系。常用的方法包括状态空间平均法、小信号建模等。 ##### 3.2 参数计算 基于建立的数学模型,可以进一步计算出谐振网络的关键参数,如谐振电感Lr、谐振电容Cr等。这些参数的选择直接影响到变换器的工作性能。 ##### 3.3 效率分析 效率是评估电源转换器性能的核心指标之一。通过对LLC谐振变换器的效率分析,可以明确影响效率的关键因素,如开关损耗、导通损耗等,并提出相应的改进措施。 #### 四、最优化设计 ##### 4.1 设计目标 在进行最优化设计时,需明确设计目标。通常包括提高效率、减小体积、降低成本等。 ##### 4.2 关键参数优化 针对不同应用场景,选择合适的谐振电感、谐振电容以及开关频率等参数。例如,通过优化谐振电感Lr的值,可以在较宽的负载范围内保持高效率。 ##### 4.3 控制策略优化 合理的控制策略对于实现LLC谐振变换器的最佳性能至关重要。常见的控制方法包括固定频率控制、变频率控制等。通过对控制策略的优化,可以提高系统的稳定性和响应速度。 #### 五、实验验证 为了验证理论分析与设计的有效性,通常需要进行实验测试。通过搭建实验平台,采集实际运行数据,并与理论预测结果进行对比分析,可以评估设计的合理性并进一步完善设计方案。 #### 六、结论 通过对LLC谐振变换器的深入研究,不仅能够揭示其工作机理,还能为其最优化设计提供理论依据和技术支持。随着技术的进步和需求的变化,未来LLC谐振变换器的应用领域将会更加广泛,对更高效率、更小体积的追求也将持续推动其技术发展。 以上是对“LLC谐振变换器的理论分析与最优化设计”的详细介绍,希望能为读者提供有价值的参考信息。
2024-12-01 20:49:34 3.29MB 谐振变换器 LLC设计
1
同步整流buck变换器simulink模型,双闭环控制,PWM控制,效果很好。
2024-10-10 19:22:40 39KB matlab/simulink
1
三通道交错并联双向buck-boost变换器。 通过simulink搭建的三通道交错并联双向buck-boost变换器,采用电压外环,三电流内环,载波移相120°的控制方式。 在buck模式与boost模式互相切换之间,不会产生过压与过流,实现了能量双向流动。 且交错并联的拓补结构,可以减少电感电流的纹波,减小每相电感的体积,提高电路的响应速度。 该拓补可以用于储能系统中。 整个仿真全部离散化,采用离散解析器,主电路与控制部分以不同的步长运行,更加贴合实际,控制与采样环节全部自己手工搭建,没有采用Matlab自带的模块。
2024-08-15 08:36:52 3KB matlab
1
《基于FPGA的AC-AC谐振变换器实现》 文章探讨了一种创新的非接触电能传输系统中的核心技术——AC-AC谐振变换器,它能够实现从低频到高频的直接转换。这种变换器的恒幅控制策略是其核心,通过分析其运行模式,设计了一个基于Field Programmable Gate Array(FPGA)的控制系统,进而通过实验验证了这一方案的可行性。 非接触电能传输系统主要依赖高频交变磁场来传递能量,而FPGA因其可编程性和高效率,成为实现AC-AC谐振变换器控制的理想选择。在能量注入式AC-AC谐振变换器的拓扑结构中,四个MOSFET开关管与反并联二极管及RLC串联谐振网络共同作用,形成能量注入和回馈的双向流动。在不同的输入电压极性下,电路会经历能量注入、自由谐振和能量回馈三种工作模态,以实现电能的高效传输。 为了确保系统在零电流开关(Zero Current Switching,ZCS)模式下运行,并维持输出谐振电流的恒定幅值,文章设计了一个基于FPGA的双闭环控制系统。内环检测谐振电流的过零点,实现ZCS软开关,外环则通过误差比较器调整输出电流,以保持其在设定范围内。这种控制策略确保了系统在不同工作模态下的稳定运行。 具体到硬件实现,文章采用了Altera公司的EP2C5T144C8 FPGA芯片,设计了控制电路板,其中包括三路输入信号处理:50 Hz交流电源过零信号、谐振电流过零信号和误差信号。高速比较器LM319用于检测电流峰值,高速光耦隔离器件6N137则提高了隔离驱动电路的抗干扰能力和响应速度。FPGA根据设定的开关控制逻辑,实时调整MOSFET的状态,从而控制谐振电流峰值。 控制算法流程设计是系统的另一关键部分。通过对谐振电流峰值、电流方向和50 Hz低频信号方向的连续检测,系统能够在不同工作模态间切换,以保持输出电流的恒幅特性。实验结果表明,无论在空载还是10 W负载条件下,基于FPGA的谐振变换器都能有效维持谐振电流峰值的稳定性。 本文深入研究了基于FPGA的AC-AC谐振变换器的实现,通过精确的控制策略和硬件设计,实现了非接触电能传输系统中高效稳定的电流传输。这种方法对于优化能源转换效率,提升非接触电能传输系统的性能具有重要意义。
2024-07-30 05:02:06 272KB FPGA
1
buck-boost变换器的非线性PID控制,主电路也可以换成别的电路。 在经典PID中引入了两个TD非线性跟踪微分器,构成了非线性PID控制器。 当TD的输入为方波时,TD的输出,跟踪方波信号也没有超调,仿真波形如下所示。 输入电压为20V,设置输出参考电压为10V,在非线性PID的控制下,输出很快为10V,且没有超调。 当加减载时,输出电压也一直为10V。 整个仿真全部采用模块搭建,没有用到S-Function。
2024-06-20 16:13:40 350KB
1
闭环Buck-Boost变换器的建模与仿真_Matlab Simulink开关电源.zip
2024-06-19 22:35:07 120KB
1