将自适应矩估计算法(Adam)作为反向传播算法应用于普通的三层神经网络(输入层、隐含层、输出层)的反向传播过程,之后建立数据预测模型进行数据预测,压缩包中Adam.py为训练过程源码,test.py为测试过程源码,train.csv文件为训练数据集,test.csv文件为测试数据集,.npy文件为模型训练后保存的参数。
1
GA-ANN Use genetic algorithm to optimize the backpropagation neural network. 简介:这是一个利用遗传算法实现BP人工神经网络的matlab代码,可用于实现2层(隐藏层数=1,不计输入层,则共2层)的BP-ANN。 原作者为: 由于云盘易失效,在此备份。
2023-03-02 22:38:42 52KB 附件源码 文章源码
1
该代码实现了用于教程目的的多层反向传播神经网络,并允许在输入、输出和隐藏层中训练和测试任意数量的神经元。 隐藏层的数量也可以变化。 共有三个文件,其中 MLBPN_Train.m 用于在所需输入模式上构建和训练多层网络,MLBPN_Test.m 用于测试训练后的神经网络。 您可以通过修改DefinePattern.m文件来提供自己的训练模式。 如果需要,学习率、总迭代次数和激活函数都可以更改。 该代码使您能够单独修改前向和反向传播阶段,以允许在复杂的训练数据上快速收敛。
2022-12-24 12:46:09 5KB matlab
1
matlab高功率微波代码智能系统 概述 NTOU-NCE 硕士课程。 三个项目使用了三种不同的智能系统理论,包括模糊理论、进化算法和反向传播神经网络。 这些项目不是靠Matlab工具箱完成的,而是靠我自己的编程能力。 思维导图 课程内容 模糊理论 进化算法 反向传播神经网络 (BPNN) 混合系统 项目01:模糊理论 目标 : 微波炉的完全模糊控制。 这个微波炉有一些有趣的功能。 安装在此微波炉上的传感器可以检测温度和重量。 利用模糊理论,自动计算,得出适中的功率和运行时间,并根据计算结果对食物进行加热。 这些功能可以减少我们用它来加热食物的时间。 我们只需按一下按钮,食物就会被正确加热。 根据模糊规则和隶属函数,使用COG去模糊,并根据去模糊,绘制两个图表。 模糊规则: R^1:如果温度低而重量重。 然后操作时间长且功率高。 R^2:如果温度低,重量中等。 然后运行时间中等,功率高。 R^3:如果温度低,重量轻。 然后操作时间短且功率高。 R^4:如果温度中等,重量较重。 然后运行时间长,功率中等。 R^5:如果温度中等,重量中等。 然后运行时间中等,功率中等。 R^6:如果温度中
2022-11-26 10:55:45 82.48MB 系统开源
1
人工智能-反向传播神经网络在混沌时间序列预测中的应用.pdf
神经网络的前向传播和反向传播推导 x1x_{1}x1​和x2x_{2}x2​表示输入 wijw_{ij}wij​表示权重 bijb_{ij}bij​表示偏置 σi\sigma_{i}σi​表示激活函数,这里使用sigmoid激活函数 outoutout表示输出 yyy表示真实值 η\etaη表示学习率 前向传播 h1=w11x1+w13x2+b11h_{1}=w_{11}x_{1}+w_{13}x_{2}+b_{11}h1​=w11​x1​+w13​x2​+b11​,α1=σ(h1)=11+e−h1\alpha_{1}=\sigma(h1)=\frac{1}{1+e^{-h1}}α1​=σ(
2022-05-26 09:09:35 99KB 反向传播 神经网络
1
给样本训练,样本用矩阵表示(大小 7x9)
2022-05-21 17:25:01 39KB matlab
1
软件定义网络是一种全新的网络架构,集中控制是其主要优势,但若受到DDoS 攻击则会造成信息不可达,也容易造成单点失效。为了有效地识别DDoS攻击,提出了一种SDN环境下基于BP神经网络的DDoS攻击检测方法。该方法获取OpenFlow交换机的流表项,分析SDN环境下DDoS攻击特性,提取出与攻击相关的流表匹配成功率、流表项速率等六个重要特征;通过分析六个相关特征值的变化,采用BP神经网络算法对训练样本进行分类,实现对DDoS攻击的检测。实验结果表明,该方法在有效提高识别率的同时,降低了检测时间。通过在软件定义网络环境中的部署,验证了该方法的有效性。
1
matlab开发-多层反向传播神经网络。多层反向传播神经网络的实现
2021-10-15 13:37:54 5KB 未分类
1
bp反向传播神经网络 som自组织映射神经网络 matlab gui程序 及ppt 讲解
1