本教程简要介绍了基于梯度下降和 delta 规则的反向传播算法下多层神经网络的训练及其数值实现。 在 MATLAB :trade_mark: 环境中模拟网络,训练它解决字符识别问题和众所周知的 XOR 问题。 获得的结果非常有趣并且表现出优异的性能。 由于该算法是函数的近似,因此它可以用于许多需要系统识别、模式分类等的问题。 关键词:神经网络,多层感知器,训练,模式识别,反向传播,delta 规则,梯度下降。
2023-03-29 15:28:44 119KB matlab
1
将自适应梯度算法(Adagrad)作为反向传播算法应用于普通的三层神经网络(输入层、隐含层、输出层)的反向传播过程,之后建立数据预测模型进行数据预测,压缩包中train.py为训练过程源码,test.py为测试过程源码,train.csv文件为训练数据集,test.csv文件为测试数据集,.npy文件为模型训练后保存的参数。
1
将自适应矩估计算法(Adam)作为反向传播算法应用于普通的三层神经网络(输入层、隐含层、输出层)的反向传播过程,之后建立数据预测模型进行数据预测,压缩包中Adam.py为训练过程源码,test.py为测试过程源码,train.csv文件为训练数据集,test.csv文件为测试数据集,.npy文件为模型训练后保存的参数。
1
GA-ANN Use genetic algorithm to optimize the backpropagation neural network. 简介:这是一个利用遗传算法实现BP人工神经网络的matlab代码,可用于实现2层(隐藏层数=1,不计输入层,则共2层)的BP-ANN。 原作者为: 由于云盘易失效,在此备份。
2023-03-02 22:38:42 52KB 附件源码 文章源码
1
Gcam(Grad-Cam) 此仓库的新版本位于 Gcam是一个易于使用的Pytorch库,它可以使模型预测更易于理解。 它允许使用多种方法(例如,反向引导传播,Grad-Cam,Guide Grad-Cam和Grad-Cam ++)生成注意力图。 您需要添加到项目中的只是一行代码: model = gcam . inject ( model , output_dir = "attention_maps" , save_maps = True ) 产品特点 适用于分类和细分数据/模型 处理2D和3D数据 支持引导反向传播,Grad-Cam,引导Grad-Cam和Grad-Cam ++ 给定地面真理面具的注意力图评估 自动图层选择选项 安装 从安装Pytorch 通过pip安装Gcam,方法如下: pip install gcam 文献资料 Gcam已提供完整文档,您可以在以下位置查看文档: 例子 #1分类(2D) #2细分(2D) #3细分(3D) 图片 引导反向传播 Grad-Cam 导引式Grad-Cam Grad-Cam ++ 用法 # Import g
2023-02-17 20:57:33 64.49MB visualization grad-cam pytorch medical-imaging
1
今天小编就为大家分享一篇pytorch中的自定义反向传播,求导实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2023-02-15 21:23:21 45KB pytorch 自定义 反向传播 求导
1
pytorch中自定义backward()函数。在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包。 那么如何将自定义算法的梯度加入到pytorch的计算图中,能使用Loss.backward()操作自动求导并优化呢。下面的代码展示了这个功能` import torch import numpy as np from PIL import Image from torch.autograd import gradcheck class Bicubic(torch.autograd.Function): def basis_function(
2023-02-15 21:03:07 47KB c input OR
1
人工神经网络 具有反向传播和动量的人工神经网络(不使用角膜和张量流) 楷模 实施步骤 导入必要的库 麻木 matplotlib 球状 cv2 随机的 操作系统 下载并预处理数据集 加载训练和测试数据集 随机训练和测试数据集 调整图像大小并进行归一化 初始化随机权重和偏差 创建字典以存储权重和偏差 将权重和偏差初始化为零以进行反向传播 修复所有超参数 学习率 纪元数 层数 每层的单位数 动量(
1
反向传播算法
2023-02-03 13:04:03 3.84MB HTML
1
matlab 反向传播算法代码 MachineLearning-DeepLearning-NLP-LeetCode-StatisticalLearningMethod 最近在学习机器学习,深度学习,自然语言处理,统计学习方法等知识,所以决定自己将学习的相关算法用Python实现一遍,并结合GitHub上相关大牛的代码进行改进,本项目会不断的更新相关算法,欢迎star,fork和关注。 主要包括: 1.吴恩达Andrew Ng老师的机器学习课程个人笔记 Python实现, 2.deeplearning.ai(吴恩达老师的深度学习课程笔记及资源) Python实现, 3.李航《统计学习方法》 Python代码实现, 4.牛津大学xDeepMind 自然语言处理 Python代码实现, 5.LeetCode刷题,题析,分析心得笔记 Java和Python代码实现, 6.TensorFlow人工智能实践代码笔记 北京大学曹健老师课程和TensorFlow:实战Google深度学习框架(第二版) Python代码实现, 附带一些个人心得和笔记。GitHub上有很多机器学习课程的代码资源,我也准备
2023-02-03 12:37:58 720KB 系统开源
1