一般的 该存储库提供了代码和示例,用于生成最接近的反事实说明和最少的后续干预措施。 支持以下论文: (4c691b4 @ ) (9387e6c @ ) 代码先决条件 第一的, $ git clone https://github.com/amirhk/mace.git $ pip install virtualenv $ cd mace $ virtualenv -p python3 _venv $ source _venv/bin/activate $ pip install -r pip_requirements.txt $ pysmt-install --z3 --confirm-agreement 然后参考 $ python batchTest.py --help 并运行如下 $ python batchTest.py -d * dataset * -m * mod
1
反事实解释作为解释机器学习模型决策的一种方式,在技术、法律和商业界越来越受到重视。 这些解释与美国信用法要求的长期确立的“主要理由”解释具有共同特征:它们都通过突出一组被认为最相关的特征来解释决策——并隐瞒其他特征。这些“突出特征的解释”有几个可取的属性:它们对模型的复杂性没有限制,不需要模型披露,详细说明实现不同决策所需的不同之处,并且似乎自动遵守法律。 但它们远比表面看起来复杂和主观。在本文中,我们证明了特征突出解释的效用依赖于一些容易被忽视的假设:特征值的推荐变化清楚地映射到现实世界的动作,可以通过仅查看训练数据的分布来使特征相称,特征仅与手头的决策相关,并且底层模型随着时间的推移是稳定的,单调的,并且仅限于二元结果。然后我们探索几个承认并试图解决这些假设的后果,包括特征突出解释旨在尊重自主性的方式的悖论,特征突出解释赋予决策者不受限制的权力,以及使这些解释有用与需要之间的紧张关系保持模型隐藏。虽然新的研究提出了几种方法来突出特征的解释可以解决一些问题我们发现的问题、模型中的特征与现实世界中的动作之间的脱节——以及补偿这一点所需的主观选择——必须在这些技术得到有效实施之前得到理解。
2022-06-01 22:10:50 279KB interpretability counterfactual explanation
1
深度学习在许多领域都显示出了强大的性能,但其黑箱特性阻碍了其进一步的应用。作为回应,可解释人工智能应运而生,旨在解释深度学习模型的预测和行为。在众多的解释方法中,反事实解释被认为是最好的解释方法之一,因为它与人类的认知过程相似:通过构建对比情境来进行解释,人类可以认知地展示差异来解释其背后的机制。
2021-08-17 09:13:45 7.1MB #资源达人分享计划# 反事实解释
1
机器学习在许多部署的决策系统中发挥着作用,其方式通常是人类利益相关者难以理解或不可能理解的。以一种人类可以理解的方式解释机器学习模型的输入和输出之间的关系,对于开发可信的基于机器学习的系统是至关重要的。
2021-07-28 08:55:41 314KB 机器学习 反事实解释
1