内容概要:通过数据集电力变压器油温数据详细的介绍双向LSTM,以及其机制,运行原理,以及如何横向搭配单向的LSTM进行回归问题的解决。 所需数据:在本次的模型所需的数据是电力变压器油温数据,由国家电网提供,该数据集是来自中国同一个省的两个不同县的变压器数据,时间跨度为2年,原始数据每分钟记录一次(用 m 标记),每个数据集包含2年 * 365天 * 24小时 * 60分钟 = 1,051,200数据点。 每个数据点均包含8维特征,包括数据点记录日期,预测目标值OT(oil temperature)和6个不同类型功率负载特征。 适合人群:时间序列和深度学习初学者本文的模型比较简单,易于理解。 阅读建议:可以大致阅读以下,本文件只是一个简单实现版本,并不复杂。 能学到什么:能够从本文件当中读懂深度学习的代码实现过程,对于时间序列有一个简单的了解, (PS:如果你使用你自己的数据进行预测需要将时间列和官方数据集保持一致,因为在数据处理部分我添加了一部分特征工程操作,提取了一些时间信息,因为LSTM不支持时间格式的数据输入,需要转化为数字) 如果大家不懂的地方可以看我的文章部分有详细的讲解。
2024-01-31 13:39:26 441KB lstm python pytorch 深度学习
1
用于合成Kong径雷达目标识别的多视角双向LSTM网络
2022-06-04 22:19:17 2.12MB 研究论文
1
实体关系抽取旨在识别网络文本中的实体,并提取出文本中实体之间隐含的关系。研究表明,深度神经网络在实体关系抽取任务上具有可行性,并优于传统关系抽取方法。目前的关系抽取方法大都使用卷积神经网络(CNN)和长短期记忆神经网络(LSTM),然而CNN只考虑连续词之间的相关性而忽略了非连续词之间的相关性。另外,LSTM虽然考虑了长距离词的相关性,但提取特征不够充分。针对这些问题,提出了一种CNN和LSTM结合的实体关系抽取方法,采用3种结合方法进行了实验,验证了该方法的有效性,在F1值上有一定的提升。
1
anaGo anaGo是一个在Keras中实现的用于序列标记(NER,PoS标记等)的Python库。 anaGo可以解决序列标记的任务,例如命名实体识别(NER),词性标记(POS标记),语义anaGo anaGo是用于序列标记(NER,PoS标记等)的Python库,在Keras中实现。 anaGo可以解决序列标记任务,例如命名实体识别(NER),词性标记(POS标记),语义角色标记(SRL)等。 与传统的序列标签求解器不同,anaGo不需要定义任何语言相关的功能。 因此,我们可以轻松地将anaGo用于任何语言。 作为anaGo的示例,下图显示了英语的命名实体识别:
2022-05-19 16:40:14 5.91MB Python Deep Learning
1
本系统通过目标检测算法使得系统可以通过图片识别一个或多个垃圾并对其进行分类,相较于传统的图片分类算法,允许用户同时识别多种垃圾;通过基于深度学习算法的文本分析使得系统能够充分理解各种物体名称的具体含义,以便于通过用户输入的名称对垃圾种类进行分类。 二、系统说明 2.1 功能介绍 图片垃圾分类:系统能够对图片中的多个物体进行检测并进行垃圾分类,最终返回待分类垃圾的物体名称以及其所属的垃圾类别。 文本垃圾分类:系统在对接收到的文本进行检测后,会返回待分类垃圾所属的垃圾类别。 2.2 数据介绍 图片数据集:图片识别类来自2019华为云垃圾分类挑战赛、爬虫搜集,共两万余张图片,91类物体;目标检测类为COCO数据集。 文本数据集:爬虫搜集,共3000类物体名称(其中有相似的,例如电池和干电池) 由于数据集过大,因此不会上传,如有需要可以在issue中提出。 2.3. 模型介绍(v1.0版本) 目标检测模型使用谷歌Object-Detection中的SSD模型、图片识别模型使用Inception-Resnet-v2模型。 文本分类模型使用两层双向LSTM与两层一维卷积模型,其中词向量层使用了
2022-05-09 11:04:27 77.94MB python
一个双向LSTM程序 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息。LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。 LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力! 所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。(A bidirectional LSTM program Long short term network, commonly known as LSTM, is a special type of RNN that can learn long-term dependent information. LSTM was proposed by Hochreiter & schmidhuber
2022-04-06 20:07:05 2KB lstm 小程序 人工智能 rnn
LSTM用于人类活动识别 使用智能手机传感器数据集(腰部连接的手机)基于LSTM的人类活动识别。 将运动类型分为以下六类: 步行, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, 坐下 常设, 铺设。 数据集 可以从下载数据集 点击此以观看有关如何收集数据的视频 通过应用噪声滤波器对传感器信号(加速度计和陀螺仪)进行预处理,然后在2.56秒和50%重叠(128个读数/窗口)的固定宽度滑动窗口中进行采样。 使用巴特沃斯低通滤波器将具有重力和人体运动成分的传感器加速度信号分离为人体加速度和重力。 假定重力仅具有低频分量,因此使用了具有0.3 Hz截止频率的滤波器。 模型 在此仓库中,我们采用了两层堆叠的基本LSTM,几乎使用了原始数据:只有重力效应已从加速度计中滤出,作为另一个3D功能的预处理步骤,以作为帮助学习的输入。 用法 安装TensorFlow r
2022-04-06 10:32:15 113.18MB JupyterNotebook
1
Tensorflow v2 双向LSTM完整模型 具有输入和输出 包括训练、预测、精度评估 具有三种模型精度评价指标 双向LSTM具有更强的稳定性、可靠性和精度
2022-04-06 03:10:19 5KB tensorflow lstm 架构 人工智能
一个双向LSTM程序 Long Short Term 网络—— 一般就叫做 LSTM ——是一种 RNN 特殊的类型,可以学习长期依赖信息。LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。 LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力! 所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。(A bidirectional LSTM program Long short term network, commonly known as LSTM, is a special type of RNN that can learn long-term dependent information. LSTM was proposed by Hochreiter & schmidhuber (1997) and recently improved and promoted by Alex graves. In many problems, LSTM has achieved great success and has been widely used. LSTM is designed to avoid long-term dependency. Remember that long-term information is the default behavior of LSTM in practice, not the ability to acquire it at a great cost! All RNNs have a chained form of repetitive neural network modules. In the standard RNN, this repetitive module has only a very simple structure, such as a tanh layer.)
2021-12-20 18:03:24 2KB LSTM