配低阻电阻传感器的惠斯登电桥, 若采用直流电压源激励, 则由于极化作用和传感器的热电效应的影响, 电桥输出信号将有误差。而且, 用于电桥的直流信号放大器必须克服像偏 移电压、漂移和泄漏电流等问题。本文介绍一种利用双向恒流方波源激励电桥的新方法。 惠斯登电桥是一种常用的测量电路,主要用于检测电阻的变化,如在应变片传感器中。在传统的惠斯登电桥中,通常采用直流电压源作为激励,然而这种方法存在一些问题。当电桥连接低阻传感器时,直流电压激励可能会导致极化作用,使传感器产生热电效应,从而影响电桥的输出信号,产生误差。此外,直流信号放大器在处理电桥输出时需要克服偏移电压、漂移和泄漏电流等问题。 为了解决这些问题,文章提出了采用双向恒流源供电的新方法。双向恒流源可以提供稳定且方向可变的电流,这种电流源本身具有短路保护功能,非常适合用于低阻电桥。由于电流是恒定的,不会因为极化或热电效应产生额外的寄生电压,从而降低了误差。同时,这种电源的双向特性有助于消除与直流放大器相关的偏移电压、漂移和泄漏电流等问题。 具体实现中,电桥激励由一个方波发生器(放大器−∀)生成,其输出通过背靠背齐纳二极管限制在饱和电平以下。振荡频率可以通过公式设定,文中给出的频率大约为千赫兹左右。方波电压源通过二极管桥和沟道场效应管转换成双向电流源,调整电阻器的值来设定场效应管的漏极电流,通常是微安级别。应变片电桥作为负载,接收这种双向激励电流,其差分输出信号通过单端差分放大器(−.)进行放大。 为了隔绝电桥因热电效应产生的直流电势,采用了电容隔离。接下来的线路使用放大器−.进行精密半波解调,二极管在反馈回路中,其非线性、温度敏感度和正向电压降都得到了降低。解调后的输出通过低通滤波器滤波后送至显示器。在无应变状态下,调整电阻器2+.的值,使得输出读数为零。 采用恒流源激励的一大优势在于,即使电源的任意两个输出端子之间出现短路,系统也能恢复正常工作,这对于远程传感器应用尤其重要,例如在结构挠曲测量中使用应变仪。通过选择适当的引线和元件,可以减少寄生电容和电感引起的误差,提高测量精度。 这种双向恒流源供电的惠斯登电桥方案提升了测量的准确性和稳定性,特别适合低阻传感器的应用,并且能够有效应对各种电气干扰,确保了测量结果的可靠性。
2025-06-13 03:18:00 85KB
1
在Simulink中构建了一个双向Buck-Boost电路仿真模型,该模型具备以下特点: 模型结构:模型完整涵盖了主电路和控制电路两大部分。主电路部分设计用于实现电能的双向转换,能够适应不同工作模式下的能量传输需求;控制电路则负责对电路的运行状态进行精准调控,确保系统稳定运行。 控制策略:控制电路采用了电压电流双闭环控制架构,并且在每个闭环中均运用了PI(比例-积分)控制器。电压环主要负责维持输出电压的稳定,确保其在设定值附近精确调节;电流环则用于精确控制电路中的电流,从而实现快速动态响应和良好的稳态性能。通过双闭环的协同作用,系统能够在不同负载和输入条件下保持高效稳定的运行状态。 负载特性:主电路设计中加入了可变负载模块,支持负载的动态投切功能。这意味着在仿真过程中,可以模拟负载大小的快速变化,例如从轻载突变为重载,或者反之。通过这种方式,能够直观地观察和分析电路在负载突变时的动态响应特性,包括输出电压的波动、恢复时间以及电流的变化情况等,从而验证电路的适应性和稳定性。 参数配置与运行状态:该模型的主电路和控制电路的所有关键参数均已根据实际应用需求进行了详细且合理的配置。这些参数包括电感、电容、开关器件的特性参数,以及PI控制器的比例系数和积分系数等。经过精细调整后,模型可以直接运行,无需额外的参数设置。用户可以直接启动仿真,观察电路在不同工况下的运行情况,包括稳态性能、动态响应特性等,方便进行电路性能评估和优化研究。
2025-06-12 13:35:38 56KB Simulink
1
内容概要:本文探讨了光伏发电与电池储能系统的整合应用及其在Simulink仿真平台上的建模与优化。首先介绍了光伏发电和电池储能的基本概念,随后详细阐述了MPPT(最大功率点跟踪)增量导纳法的应用,该方法通过实时调整光伏系统的阻抗来确保最大功率输出。接着讨论了双向buck-boost电路在储能系统中的重要作用,它可以实现能量的双向传输并在充放电过程中调节电压。最后,文章强调了Simulink仿真平台在系统建模与优化中的重要性,通过仿真可以优化参数配置和控制策略,提升系统性能。 适合人群:从事新能源技术研发的专业人士、高校相关专业师生、对光伏发电和电池储能感兴趣的科研人员。 使用场景及目标:适用于希望深入了解光伏发电与电池储能系统的工作原理和技术细节的研究人员;目标是在实际项目中应用这些技术和仿真工具,以提高系统的效率和可靠性。 阅读建议:读者可以通过本文了解MPPT增量导纳法的具体实现方式,掌握双向buck-boost电路的设计思路,并学会使用Simulink进行系统建模与优化。建议结合实际案例进行深入理解和实践操作。
2025-06-12 13:35:14 1.26MB Simulink buck-boost电路
1
内容概要:本文详细介绍了基于S7-1200PLC的狭窄隧道汽车双向行控制系统的设计任务书。该系统旨在解决城市交通中狭窄隧道的行车安全与有序通行问题。主要内容涵盖设计任务与要求、系统的工作逻辑、硬件与软件设计、系统测试与验收以及后续的维护与升级。具体来说,系统实现了无人值班指挥,能错开时序双向行车,并设置了详细的信号灯控制逻辑,如防止两道口绿灯同时亮、车辆进入与离开检测、特定时序控制等。此外,还提供了博途PLC与HMI仿真工程、配套IO点表、PLC接线图、主电路图、控制流程图及相关视频讲解。 适合人群:从事工业自动化、PLC编程、交通控制系统设计的专业人士和技术爱好者。 使用场景及目标:适用于需要设计和实施类似交通控制系统的工程项目,特别是针对狭窄隧道的双向行车控制。目标是确保隧道内行车的安全、有序和高效。 其他说明:该系统不仅关注硬件选择与配置,还包括了详细的软件编程和调试步骤,确保整个系统能够稳定可靠地运行。
2025-06-11 08:57:14 458KB PLC
1
内容概要:本文深入探讨了非隔离双向DC-DC Buck-Boost变换器的工作原理及其在Matlab/Simulink环境下的仿真建模方法。文中详细描述了变换器的主电路和控制电路设计,特别是采用了电压外环电流内环的双闭环控制方式来确保系统在不同工作状态下的稳定性。具体来说,在正向运行时,直流电压源可以为蓄电池提供恒流恒压充电;而在反向运行时,蓄电池能放电以维持直流侧电压稳定。通过一系列仿真实验,验证了所提模型的有效性和可靠性。 适合人群:对电力电子系统有兴趣的研究人员和技术爱好者,尤其是那些希望深入了解非隔离双向DC-DC变换器以及掌握Matlab/Simulink仿真技能的人士。 使用场景及目标:适用于需要评估或改进非隔离双向DC-DC变换器性能的研究项目;也可用于教学环境中帮助学生更好地理解相关理论知识并培养实际操作能力。 其他说明:文中提供的仿真模型不仅有助于理解变换器的基本运作机制,还为进一步探索其性能优化和控制策略奠定了坚实的基础。
2025-06-02 22:12:48 344KB
1
《基于S7-1200 PLC的狭窄隧道汽车错峰双向行车控制系统优化设计》,基于S7-1200 PLC的隧道智能双向行车控制系统设计与实现:优化狭窄隧道交通流管理策略,《基于S7-1200PLC的狭窄隧道汽车双向行控制系统设计》 一、设计任务书 1)无人值班指挥,能错开时序双向行车。 2)按启动按钮,A口绿灯亮,B口红灯亮,信号灯控制系统开始工作。 3)两道口绿灯不能同时亮,如果万一同时亮,系统停止工作并报警。 4)从A口绿灯开始亮时计算,在持续5s内如果无车辆进入A口,则A口绿灯闪烁2后熄灭且红灯亮,而B口红灯熄灭绿灯亮。 同样,如果B口绿灯持续亮5s内无车辆进入B口,则B口绿灯闪烁2s熄灭红灯亮,而此时A口绿灯亮。 这是两道口均无车进入隧道的要求。 5)当A口绿灯亮时,从A口进入第一辆车算起,B口红灯持续亮90s,同时A口绿灯持续亮20s,接着闪烁2s后熄灭,红灯亮68s(B口红灯仍亮着)。 即待从A口进入隧道内的汽车全部开出后,B口才能进车。 6)当B口绿灯亮时,从B口进入第一辆车算起,A口红灯持续亮90s,B口绿灯持续亮20s,接着闪烁2s后熄灭,此后两道口红灯同时亮68s。 即
2025-05-17 19:39:22 229KB xbox
1
标题中的“机器人寻路算法双向A*(Bidirectional A*)算法的实现C++、Python、Matlab语言”指的是在编程领域中,一种用于解决路径规划问题的高级算法——双向A*(Bidirectional A*)的实现。这种算法是A*(A-star)算法的一个扩展,适用于机器人导航、游戏开发、地图路径规划等多种场景。本文将详细探讨双向A*算法的原理、优势以及在C++、Python和Matlab三种不同编程语言中的实现方法。 双向A*算法是在单向A*的基础上发展而来的,其核心思想是同时从起点和终点开始搜索,两个方向的搜索会逐渐接近直到相遇,从而大大减少了搜索的步数和时间。相较于单向A*,它能更快地找到最优路径,特别是在大型复杂环境中。 我们需要理解A*算法的基础。A*算法是一种启发式搜索算法,结合了Dijkstra算法的最短路径寻找和最佳优先搜索的特性。它使用一个评估函数f(n) = g(n) + h(n),其中g(n)是从起点到当前节点的实际成本,h(n)是从当前节点到目标节点的预计成本。A*算法会优先考虑具有最低f值的节点进行扩展。 双向A*算法在实现时,需要维护两个开放列表,一个从起点开始,另一个从终点开始。每个列表都会更新其对应的g值,并与对方列表中的节点进行比较,如果发现有相交的节点,则可以停止搜索并组合路径。为了提高效率,需要选择合适的启发式函数h(n),通常使用曼哈顿距离或欧几里得距离。 在C++中实现双向A*,你需要熟悉STL库,如队列和优先级队列,用于存储和处理节点。同时,还需要定义数据结构来表示节点和边,以及计算代价和启发式函数的方法。 Python实现则相对简洁,可以利用内置的数据结构和第三方库如`heapq`来进行优先级队列操作。Python的动态类型和简洁语法使得代码更易读写。 Matlab作为一门科学计算语言,也支持实现双向A*。在Matlab中,你可以使用`heappush`和`heappop`函数来实现优先级队列,同时Matlab强大的矩阵运算能力有助于优化计算过程。 在实现过程中,需要注意的关键点包括: 1. 启发式函数的选择和计算。 2. 有效存储和更新节点信息。 3. 正确处理开放列表和关闭列表。 4. 判断相遇并组合路径的逻辑。 双向A*算法是一种高效的路径规划工具,适合在多种编程环境中实现。理解其原理并熟练掌握在C++、Python或Matlab中的实现方法,对提升编程技能和解决实际问题大有裨益。通过阅读提供的链接文章(https://blog.csdn.net/weixin_44584198/article/details/137058282),可以获取更多关于双向A*算法的详细信息和示例代码,进一步加深理解和实践。
2025-05-08 14:49:03 168.65MB python matlab
1
双向BUCK BOOST电路仿真:基于VDCM控制与电压电流双闭环控制的直流变换器惯性与阻尼特性研究,基于虚拟直流电机控制的双向BUCK BOOST电路仿真:增强直流微电网惯性阻尼与电压电流稳定性分析,双向buck boost电路仿真(VDCM控制 电压电流双闭环控制) 利用了传统电机的阻尼和旋转惯量以及励磁暂态特性,因此在负载功率变化时,输出电压更容易受到影响。 随着交流同步机在交流微电网中的逐渐应用,其思想也被用于dc dc变器中,实现了VDCM控制,从而增加了直流微电网的惯性和阻尼。 该仿真应用双向BUCK BOOST电路,采用直流电机(VDCM)控制策略,与传统pi对比提升了直流变器惯性阻尼特性。 可以看到负载输出的电压电流稳定 2018b版本及以上 ,双向buck_boost电路仿真; VDCM控制; 电压电流双闭环控制; 直流微电网; 惯性和阻尼; 2018b版本以上,基于VDCM控制的双向BUCK BOOST电路仿真:增强惯性与阻尼特性的DC微电网应用
2025-05-08 07:59:28 201KB istio
1
内容概要:本文详细介绍了基于STM32F334C8T6的四开关Buck-Boost双向DC-DC电源设计方案。涵盖了硬件选型、电路设计、代码实现以及仿真的全过程。硬件方面,重点讨论了H桥MOS管布局、LC滤波器选择、保护机制设计等;软件方面,则深入探讨了HRTIM定时器配置、模式切换逻辑、PI控制器应用及保护机制实现。文中提供了详细的代码片段和仿真模型,确保设计的高效性和稳定性。 适合人群:从事电源设计的工程师和技术爱好者,特别是对双向DC-DC转换器感兴趣的读者。 使用场景及目标:适用于需要高效率、双向能量流动的电源应用场景,如新能源储能、电池充放电管理等。目标是帮助读者掌握四开关Buck-Boost拓扑的工作原理及其在实际项目中的应用。 其他说明:文章不仅提供了完整的硬件设计报告和代码实现,还包括详细的仿真模型和参数计算,有助于读者全面理解和优化设计。此外,文中还分享了许多调试技巧和实践经验,对于提高设计成功率非常有帮助。
2025-05-05 14:53:16 2.28MB
1
储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池与Buck-Boost双向DC-DC变换器Simulink仿真模型研究:放电电压电流双闭环控制与充电单电流环策略,储能蓄电池+buckboost双向DC-DC变器Simulink仿真模型 放电电压电流双闭环 充电单电流环 ,储能蓄电池; buckboost; 双向DC-DC变换器; Simulink仿真模型; 放电电压电流双闭环; 充电单电流环。,基于储能蓄电池的Buck-Boost双向DC-DC变换器Simulink仿真模型研究
2025-05-05 14:02:21 696KB 数据仓库
1